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Abstract— Control problems of mixed-autonomy traffic sys-
tems that consist of both human-driven vehicles (HV) and
autonomous vehicles (AV), have gained increasing attention.
This paper focuses on suppressing traffic oscillations in the
mixed-autonomy traffic system using boundary control design.
The mixed traffic dynamics are described by 4× 4 hyperbolic
partial differential equations (PDEs), governing the propagation
of four waves of traffic, including the density of HV, the density
of AV, the friction between the two vehicle classes from driving
interactions and the averaged velocity. We propose an event-
triggered boundary control design since control signals of the
traffic light on ramp or the varying speed limit cannot be
continuously updated. We apply the event-triggered mechanism
for a PDE backstepping controller and obtain a dynamic
triggering condition. Lyapunov analysis is performed to prove
the exponential stability of the closed-loop system with the
event-triggered controller. Numerical simulation demonstrates
the efficiency of the proposed event-trigger control design. We
analyzed how the car-following spacing of AV affects the event-
triggering mechanism of the control input in mixed-autonomy
traffic.

I. INTRODUCTION

Various boundary control designs have been studied for
the suppression of freeway traffic congestion [13]. The prac-
tical implementation of boundary control signals is achieved
through traffic lights on ramps and variable speed limits
(VSL). With the rapid development of autonomous driving
technology, the penetration of autonomous vehicles (AV) in
traffic has increased over the years, resulting in a mixed-
autonomy traffic system consisting of both human-driven
vehicles (HV) and AV. Traffic oscillations may arise from
car-following and lane-changing interactions between AV
and HV. The design of boundary control strategies for mixed-
autonomy traffic remains an open question.

Event-based control is a computer control strategy aimed
at improving system efficiency by updating the controller
aperiodically. It requires defining a triggering condition for
determining the time instant at which the controller needs
to be updated. The triggering condition can be static or
dynamic [6], [14], [15]. Event-triggered control(ETC) for
hyperbolic PDEs was first developed by Espitia [4]. Initially,
a continuous control input that can stabilize the system
is designed, with an event-triggered mechanism embedded
within the system. The event-triggered mechanism operates
based on the system states and the state that describes the
dynamics of the mechanism. The event-triggered control
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input, which also stabilizes the system, is then obtained
through this mechanism. In traffic applications, Yu [17] first
presented results for stabilizing traffic oscillations using the
backstepping method, providing both theoretical guarantees
and practical application potential. The author in [3] de-
veloped an event-triggered output-feedback controller for
cascaded roads. Event-triggered control has garnered interest
due to its efficient use of communication and computational
resources by updating the control law periodically.

The traffic dynamics for pure HV traffic are described
by hyperbolic PDEs, such as the second-order Aw-Rascle-
Zhang (ARZ) model [1], [18]. Backstepping boundary con-
trol has been developed for the ARZ model [17], [16], [3].
In addition to the backstepping control method, feedback
control [10], [19] and optimal control [7], [8] can also be
applied for boundary stabilization of traffic PDE models.
Boundary control input is implemented by manipulating the
red-green phase of traffic lights on ramps and the velocity
display of VSL. Continuous control input needs to be up-
dated periodically at each time step, which poses challenges
for practical implementation. Some studies have developed
ramp metering controllers for discrete-time traffic systems
and designed discrete control laws. In [12], a hierarchi-
cal centralized/decentralized event-triggered control method
was proposed to reduce computation and communication
load. Ferrara [5] introduced event-triggered model predic-
tive schemes for discrete models of freeway traffic control.
However, previous efforts to mitigate traffic congestion have
primarily focused on traffic consisting solely of HV. For
mixed-autonomy traffic, the interactive driving behaviors of
AV and HV make boundary control problems more complex.
In this paper, we propose an event-triggered control method
for the mixed-autonomy traffic system.

The main contributions of this paper are twofold: we
propose the first event-triggered controller for a mixed-
autonomy traffic system modeled by an extended ARZ
model and provide a theoretical guarantee through Lyapunov
analysis. For application relevance, the results can be applied
to traffic management systems to reduce computational re-
sources and improve the overall efficiency of traffic opera-
tions. This work paves the way for deployment of advanced
traffic management strategies.

The paper is organized as follows. Section II introduces
the mixed-autonomy traffic system using the extended ARZ
model. In Section III, the boundary control model is derived,
and the backstepping controller in its continuous form is
proposed. In Section IV, the event-triggered boundary con-
troller is developed, and Lyapunov analysis is performed to
the closed-loop system. Section V presents the numerical
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simulation results, while Section VI concludes the paper.

II. MIXED-AUTONOMY TRAFFIC PDE MODEL

Motivated by the two-class extended ARZ PDE model [2],
the mixed-autonomy traffic consisting of HV and AV is
proposed as

∂tρh + ∂x (ρhvh) = 0, (1)

∂t (vh − Ve,h) + vh∂x (vh − Ve,h) =
Ve,h − vh

τh
, (2)

∂tρa + ∂x (ρava) = 0, (3)

∂t (va − Ve,a) + va∂x (va − Ve,a) =
Ve,a − va

τa
, (4)

ρh(x, t) and ρa(x, t) are the traffic densities of HV and AV,
vh(x, t), va(x, t) are the traffic velocities of HV and AV. The
boundary conditions are set as

ρh(0, t) = ρ⋆h, ρa(0, t) = ρ⋆a, (5)
ρh(0, t)vh(0, t) + ρa(0, t)va(0, t) = ρ⋆hv

⋆
h + ρ⋆av

⋆
a , (6)

ρh(L, t)vh(L, t) + ρa(L, t)va(L, t) = q⋆h + q⋆a + U(t), (7)

where the spatial and time domain is defined as (x, t) ∈
[0, L]×R+, ρ⋆h, ρ⋆a are the equilibrium densities, and v⋆h, v⋆a
are the equilibrium speeds. We will design event-triggered
boundary controller boundary control signal of ramp meter-
ing or VSL. We define the area occupancy AO to describe the
interaction between the two-class vehicles on the road [2],
[11]

AO(ρh, ρa) =
ahρh + aaρa

W
, (8)

where W is the road width. The impact area for HV ah and
AV aa can be described as:

ah = d× (l + sh), aa = d× (l + sa) (9)

where d is the vehicle width, l is the vehicle length. We
assume that the width and length are the same. sh is the
car-following gap of HV, sa is the car-following gap of AV.
The fundamental diagram based on the area occupancy is
introduced for velocity-density equilibrium relation as:

v⋆h = Ve,h(ρh, ρa) = Vh

(
1−

(
AO

AOh

)γh
)
, (10)

v⋆a = Ve,a(ρh, ρa) = Va

(
1−

(
AO

AOa

)γa
)
, (11)

where Vh, Va are the maximum speed, AOh, AOa are the
maximum area occupancy, γh, γa are the traffic pressure
exponent.

Compared to HV, AV tends to have a larger spacing due
to the conservative driving strategies they have equipped. A
larger spacing leads to a larger impact area, inducing the
”creeping effect” on the road that HV takes over AV in
congested regimes.

III. BACKSTEPPING CONTROL DESIGN

A. Boundary control model
Linearizing the system at its equilibrium point ρ⋆h, ρ⋆a, v⋆h,

v⋆a and defining a small deviation ρ̃h(x, t) = ρh(x, t) − ρ⋆h,
ṽh(x, t) = vh(x, t)− v⋆h, ρ̃a(x, t) = ρa(x, t)−ρ⋆a, ṽa(x, t) =
va(x, t)−v⋆a . Writing the system in an augmented expression
z(x, t) =

[
ρ̃h(x, t) ṽh(x, t) ρ̃a(x, t) ṽa(x, t)

]T
Defin-

ing the matrix V = {v̂ij}1≤i,j≤4 such that the coefficient
matrix is diagonalized as V−1JλV = Diag{λ1, λ2, λ3, λ4},
with positive eigenvalues in ascending order. We also define
the source term matrix as Ĵ = V−1JV = {Ĵij}1≤i,j≤4. The
transformation matrix T is given as

T =

T+

T−

 =


0 e

− Ĵ22
v∗
a

x
0 0

0 0 e−
Ĵ33
λ3

x 0

e
− Ĵ11

v∗
h

x
0 0 0

0 0 0 e−
Ĵ44
λ4

x

V−1,

(12)

where T+ ∈ R3×4 and T− ∈ R1×4. The change of
coordinates is [

w1 w2 w3 w4

]T
= Tz. (13)

Then we perform Riemann transformation of the linarized
system, thus we get

w+
t (x, t) + Λ+w+

x (x, t) =Σ++(x)w+(x, t)

+ Σ+−(x)w−(x, t), (14)

w−
t (x, t)− Λ−w−

x (x, t) =Σ−+(x)w+(x, t), (15)

w+(0, t) =Qw−(0, t), (16)

w−(L, t) =Rw+(L, t) + Ū(t), (17)

where w+ = [w1, w2, w3]
T, w− = w4. The coefficient

matrices are given as Λ+ = Diag{λ1, λ2, λ3}, Λ− = −λ4,
Σ++(x), Σ+−(x), Σ−+(x), Q ∈ R3×1, and R ∈ R1×3

coefficients which can be obtained by the Riemann transfor-
mation. The details of the coefficients can be found in [2].
Also, Ū(t) = e−

Ĵ44
λ4

L 1
κU(t), κ = v∗hv̂14 + ρ∗hv̂24 + v∗a v̂34 +

ρ∗av̂44. The eigenvalues were shown to satisfy the following
condition: [20]

λ4 ≤ min{λ1, λ3} ≤ λ2 ≤ max{λ1, λ3}. (18)

The traffic system would be congested if λ4 < 0. In the
congested regime, the traffic information propagates from
downstream to upstream and the efficiency of the traffic
system becomes low. The traffic system can be divided
into free and congested regimes based on the direction of
propagation of traffic waves.

B. Backstepping transformation and controller design
We consider the stabilization of the closed-loop system

(14)-(17) with continuous control input at each time step.
Defining the backstepping transformation:

Kw =

(
w+

w− −
∫ x

0
K(x, ξ)w+(ξ, t) +M(x, ξ)w−(ξ, t)dξ

)
,

(19)
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where w = [w+,w−] and the backstepping control kernel
K(x, ξ) ∈ R1×3, M(x, ξ) ∈ R1×1 are defined as:

K(x, ξ) =
[
k1(x, ξ) k2(x, ξ) k3(x, ξ)

]
(20)

Both kernels are defined in the triangular domain T = {0 ≤
ξ ≤ x ≤ L}. And the target perturbed system is:

αt(x, t) + Λ+αx(x, t) =Σ++(x)α(x, t) + Σ+−(x)β(x, t)

+

∫ x

0

C+(x, ξ)α(ξ, t)dξ +

∫ x

0

C−(x, ξ)β(ξ, t)dξ, (21)

βt (x, t)− Λ−βx(x, t) = 0, (22)
α(0, t) = Qβ(0, t) (23)
β(L, t) = 0 (24)

where α = [α1, α2, α3]
T. The coefficients C+(x, ξ) ∈ R3×3

and C−(x, ξ) ∈ R3×1 are defined in the same triangular
domain T . The kernel equations are stated in [2] and the
well-posedness of the target system and the kernel equations
are proved in [9], [21]. The control input is given as:

Ū(t) =

∫ L

0

(
K(L, ξ)w+(ξ, t) +M(L, ξ)w−(ξ, t)

)
dξ.

−Rw+(L, t). (25)

C. Inverse Transformation

The transformation (19) is invertible such that the target
system share the same properties with the original system.
The inverse transformation turn the target system (21)-(24)
into the original system (14)-(17):

Lϑ =

(
α

β −
∫ x

0
(L(x, ξ)α(ξ, t) +N(x, ξ)β(ξ, t))dξ

)
(26)

where ϑ = [α1, α2, α3, β]
T and L(x, ξ) ∈ R3×1, N(x, ξ) ∈

R1×1 are defined as:

L(x, ξ) =
[
ℓ1(x, ξ) ℓ2(x, ξ) ℓ3(x, ξ)

]
(27)

Inverse kernels are also defined in the same triangular
domain T . The inverse kernel equations are easily obtained
in [9]. The states w and ϑ have equivalent L2 norm, i.e.
there exist two constants p1 > 0 and p2 > 0 such that
p1∥w∥2L2 ≤ ∥ϑ∥2L2 ≤ p2∥w∥2L2 , where ϑ = (α1, α2, α3, β).
The continuous-time control input Ū(t) is calculated using
states (α, β) of target system:

Ū(t) =

∫ L

0

(L(L, ξ)α(ξ, t) +N(L, ξ)β(ξ, t))dξ

−Rw+(L, t) (28)

IV. EVENT-TRIGGERED BOUNDARY CONTROL

In this section, we introduce the event-triggered conditions
for the traffic system, which determine the time intervals
at which the controller should be updated. We then ensure
the exponential stability of the closed-loop system. First, we
consider the stabilization of the closed-loop system based on
events by sampling the continuous-time controller Ū(t) at a
certain sequence of time instants. The controller is updated

when the triggering conditions are met. We then redefine the
boundary control input in (17):

w−(L, t) = Rw+(L, t) + Ūd(t), (29)

where Ūd(t) = Ū(t) + d(t) for all t ∈ [tk, tk + 1), k ≥ 0.
Here, d(t) represents the deviation between the theoretical
control input and the event-triggered control input. Conse-
quently, the sampled control law is expressed as:

Ūd(t) =

∫ L

0

(L(L, ξ)α(ξ, tk) +N(L, ξ)β(ξ, tk))dξ

−Rw+(L, tk), (30)

thus we get the actuation deviation d(t):

d(t) =−R(w+(L, tk)−w+(L, t))

+

∫ L

0

(
L(L, ξ)(α(ξ, tk)− α(ξ, t))

+N(L, ξ)(β(ξ, tk)− β(ξ, t)

)
dξ. (31)

Applying the sampled control law Ūd(t) to the system (14)-
(17), we get the perturbed target system:

αt(x, t) + Λ+αx(x, t) =Σ++(x)α(x, t) + Σ+−(x)β(x, t)

+

∫ x

0

C+(x, ξ)α(ξ, t)dξ +

∫ x

0

C−(x, ξ)β(ξ, t)dξ, (32)

βt (x, t)− Λ−βx(x, t) = 0, (33)
α(0, t) = Qβ(0, t), (34)
β(L, t) = d(t). (35)

We consider a triggering condition relies on the evolution of
d(t) and the following Lyapunov function,

V (t) =

∫ L

0

3∑
i=1

Ai

λi
e
−µx

λi α2
i (x, t) +

B

Λ− e
µx

Λ− β2(x, t)dx,

(36)

where the constant coefficients A1, A2, A3, B and µ are
positive. The Lyapunov candidate is equivalent to the L2

norm of the state ϑ, therefore, there exist two constants p3 >
0 and p4 > 0 such that p3∥ϑ∥2L2 ≤ V (t) ≤ p4∥ϑ∥2L2 .

A. Dynamic triggering condition

We define the event-triggered mechanism (ETM) using
the dynamic triggering condition which can be derived by
the evolution of the controller deviation (31) and another
dynamic variable m(t).

Definition 1. Let the Lyapunov candidate V (t) be given
by (36). The event-triggered controller is defined in (30)
with a dynamic event-triggered mechanism. The time of the
execution tk ≥ 0 from t0 = 0 in a finite number set of times.
The set is determined by:

• if {t > tk ∧ ζBe
µL

Λ− d2(t) ≥ ζµσV (t) − m(t)} = ∅,
then the set of the times of the events is { t0, . . . , tk}.

• if {t > tk ∧ ζBe
µL

Λ− d2(t) ≥ ζµσV (t) − m(t)} ≠ ∅,
then the next execution time is determined by: tk+1 =

inf{t > tk ∧Be
µL

Λ− d2(t) ≥ ζµσV (t)−m(t)},
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where m(t) satisfies the ordinary differential equation,

ṁ(t) =− ηm(t) +Be
µL

Λ− d2(t)− σµV (t)

−
3∑

i=1

ςiα
2
i (L, t)− ς4β

2(0, t), (37)

where ζ > 0, µ > 0, σ > 0, ςi > 0, i ∈ {1, 2, 3, 4}, η > 0
and m(0) = m0.

Based on the definition 1, we have the following result for
m(t).

Lemma 2. Under the ETM in Definition 1, it holds that
ζBe

µL

Λ− d2(t) − ζµσV (t) +m(t) ≤ 0 with m(t) ≤ 0

Proof. We already know the ETM in Definition 1. It holds
that the system in the simulation period always guarantee the
following condition,

ζBe
µL

Λ− d2(t)− ζµσV (t) ≤ −m(t). (38)

We have the result

Be
µL

Λ− d2(t)− µσV (t) ≤ −1

ζ
m(t), (39)

using (37), we get

ṁ(t) ≤ −ηm− 1

ζ
m(t)−

3∑
i=1

ςiα
2
i (L, t)− ς4β

2(0, t). (40)

Using the comparison principle, we have

m(t) ≤ 0,∀t ≥ 0, (41)

this finishes the proof of Lemma 2.

We also have the following lemma for the bound of the
actuation deviation d(t).

Lemma 3. There exists ϵi > 0, i ∈ {1, 2, 3}, ϕ1 and ϕ2 > 0,
for the d(t) introduced in (31) with t ∈ (tk, tk+1), such that

ḋ2(t) ≤
3∑

i=1

ϵiα
2
i (L, t) + ϕ1d

2(t) + ϕ2V (t). (42)

Proof. Taking the time derivative of d(t) and using the
dynamics of the perturbed target system in (32)-(35) and
integrating by parts, we get

ḋ(t) = L(L,L)Λ+α(L, t)−N(L,L)Λ−β(L, t)

+
(
N(L, 0)Λ− − L(L, 0)Λ+Q

)
β(0, t)

−
∫ L

0

Lξ(L, ξ)Λ
+α(ξ, t)dξ +

∫ L

0

Nξ(L, ξ)Λ
−β(ξ, t)dξ

−
∫ L

0

L(L, ξ)Σ++(ξ)w+(ξ, t)dξ

−
∫ L

0

L(L, ξ)Σ+−(ξ)w−(ξ, t)dξ. (43)

Taking the square of ḋ(t), combining Young’s inequality and
the Cauchy-Schwarz inequality, we have

ḋ2(t) ≤ 8

3∑
i=1

ℓ2i (L,L)λ
2
iα

2
i (L, t)

+ 8N2(L,L)(Λ−)2β2(L, t) +
8

p3
c1V (t) +

8

p1p3
c2V (t)

≤ 8

3∑
i=1

ℓ2i (L,L)λ
2
iα

2
i (L, t) + 8N2(L,L)(Λ−)2d2(t)

+
8

p3

(
c1 +

c2
p1

)
V (t), (44)

where c1 = max{
∫ L

0
(Lξ(L, ξ)Λ

+)2dξ,
∫ L

0

(Nξ(L, ξ)Λ
−)2dξ} c2 = max{

∫ L

0
(L(L, ξ)Σ++(ξ))2dξ,∫ L

0
(L(L, ξ)Σ+−(ξ))2dξ}. And thus we get ϵi =

8ℓ2i (L,L)λi, i ∈ {1, 2, 3}, ϕ1 = 8N2(L,L)(Λ−)2,
ϕ2 = 8

p3

(
c1 +

c2
p1

)
. This concludes the proof of Lemma

3.

B. Avoidance of Zeno phenomenon

Under the dynamic event triggering condition, the Zeno
phenomenon should be avoided. In this section, we prove that
the dynamic event-triggering condition for the system (14)-
(17) avoids the Zeno phenomenon. We have the following
theorem.

Theorem 4. There exists a minimal dwell time τ⋆ > 0
between two adjacent trigger times, tk+1 − tk ≥ τ⋆, k ≥ 0,
under the dynamic trigger condition in Definition 1 with
parameters ζ, µ, σ, ςi, i ∈ {1, 2, 3, 4}, η, ϵi, i ∈ {1, 2, 3}.
And the parameters satisfy:

ςi ≥ max{ζBe
µL

Λ− ϵi, ζµϵi, i ∈ {1, 2, 3}}, (45)

ς4 ≥ max{0,−2ζµ(
∑

Aiq
2
i −B), i ∈ {1, 2, 3}. (46)

Proof. We know from Definition 1 that for all time t ≥ 0,
all events are executed to guarantee the following:

ζBe
µL

Λ− d2(t) ≤ ζµσV (t)−m(t). (47)

Then we define the following function:

Ψ(t) =
ζBe

µL

Λ− d2(t) + 1
2m(t)

ζµσV − 1
2m(t)

. (48)

The function d(t) and V (t) are continuous in time interval
[tk, tk+1], therefore, the function Ψ(t) is also a continuous
function in [tk, tk+1]. We can derive that there exists t′k > tk
such that ∀t ∈ [t′k, tk+1], Ψ(t) ∈ [0, 1] using the intermediate
value theorem. Using Young’s inequality, we have:

Ψ̇(t) ≤ ζBe
µL

Λ− d2

ζµσV − 1
2m

+
ζBe

µL

Λ− ḋ2

ζµσV − 1
2m

+
1
2 (−ηm+Be

µL

Λ− d2 − σµV )

ζσµV − 1
2m
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+

1
2

(
−
∑3

i=1 ςiα
2
i (L, t)− ς4β

2(0, t)
)

ζµσV − 1
2m

− ζµV̇Ψ

ζµσV − 1
2m

+

1
2

(
−ηm+Be

µL

Λ− d2 − σµV
)

ζµσV − 1
2m

Ψ

+

1
2

(
−
∑3

i=1 ςiα
2
i (L, t)− ς4β

2(0, t)
)

ζµσV − 1
2m

Ψ. (49)

As defined in (36), the time derivative of V (t) can be ob-
tained by integrating by parts and using boundary conditions
for perturbed target system. Thus, the V̇ is given as:

V̇ ≤ −
3∑

i=1

Aie
−µL

λi α2
i (L, t) + (

3∑
i=1

Aiq
2
i −B)β2(0, t)

+Be
µL

Λ− d2(t)− (µ− γ)V, (50)

where γ = 2A
p3 min{λi} (maxx∈[0,L] ∥Σ++(x)∥ +(1 + 1

p1
)

maxx∈[0,L] ∥Σ+−(x)∥).

V̇ ≤ −
3∑

i=1

α2
i (L, t) + β2(0, t) +Be

µL

Λ− d2(t)− (µ− γ)V,

(51)

Choosing ςi ≥ ζBe
µL

Λ− ϵi and ςi ≥ ζµϵi, i ∈ {1, 2, 3}, ς4 >
0 and ς4 + 2ζµ(

∑
Aiq

2
i − B) > 0, we get the following

equation after simplifying:

Ψ̇(t) ≤
(−ζµ+ 1

2

ζ

)
Ψ2 +

(
1 + ϕ1 +

1

2ζ

+
−ζµσ + 1

2

ζ
+ η +

ζµσ(µ− γ)− 1
2µσ

ζµσ

)
Ψ

+

(
(ζBe

µL

Λ− ϕ2 − 1
2µσ)

ζµσ
+ η + 1 + ϕ1 +

1

2ζ

)
.

(52)

Thus, the Ψ(t) has the form:

Ψ(t) ≤ φ1Ψ
2(t) + φ2Ψ(t) + φ3, (53)

where φ1 = 1
2ζ − µσ, φ = 1 + ϕ1 +

1
2ζ (1 − σ)µ − γ + η,

φ3 = Be
µL

Λ− ϕ2

µσ +1+η+ϕ1. Using the comparison principle,
we get the time from Ψ(t′k) = 0 to Ψ(tk+1) = 1 is at least

τ⋆ =

∫ L

0

1

φ1s2 + φ2s+ φ3
ds. (54)

Then, tk+1 − tk ≥ tk+1 − tt′k = τ⋆. This finishes the proof
of Theorem 4.

Now we have proved that there exists a minimal dwell
time between two adjacent events. The Zeno phenomenon
is avoided. Based on the previous results, the exponential
stability of the system (14)-(17) with the event-triggered
controller (30) was obtained, as stated in Theorem 5.

Theorem 5. Let Ai > 0, i ∈ {1, 2, 3}, B > 0, ζ > 0,
η ∈ (0, 1), ςi, i ∈ {1, 2, 3, 4} ∈ (0, 1) such that

ςi −Aie
−µL

λi ≤ 0, i ∈ {1, 2, 3} (55)

(a) HV (b) AV

Fig. 1: The results under ETC with spacing sa = 16m

ς4 +

3∑
i=1

Aiq
2
i −B ≤ 0, i ∈ {1, 2, 3} (56)

V is given by (36) and d is given by (31). The system (14)-
(17) with the event-triggered controller (30) is exponentially
stable under the ETM in Definition 1.

Proof. We consider the following Lyapunov candidate for
perturbed target system (32)-(35),

Vd(t,m) = V (t)−m(t). (57)

Taking time derivative of the Lyapunov candidate, we get:

V̇d(t,m) ≤ Be
µL

Λ− d2(t)− (µ− γ)V − ṁ(t)

−
3∑

i=1

Aie
−µL

λi α2
i (L, t) + (

3∑
i=1

Aiq
2
i −B)β2(0, t),

(58)

taking into the expression of ṁ(t), we get:

V̇d ≤− (µ− γ)V +Be
µL

Λ− d2(t) + ηm+ µσV

−Be
µL

Λ− d2(t) +

3∑
i=1

(ςi −Aie
−µL

λi )α2
i (L, t)

+ (ς4 +

3∑
i=1

Aiq
2
i −B)β2(0, t). (59)

Simplifying the equation, thus we have:

V̇d ≤ −(µ(1− σ)− γ)Vd + (η − (µ(1− σ)− γ))m. (60)

Choosing η−(µ(1−σ)−γ) ≥ 0, we get V̇d ≤ −(µ(1−σ)−
γ)Vd. Using the comparison principle again and m(0) = 0,
we have:

V̇ (t) ≤ e−(µ(1−σ)−γ)tV (0). (61)

Therefore, an estimation of the original system of the L2

norm can be written as

∥w(x, t)∥2L2 ≤ p2p4
p1p3

e−(µ(1−σ)−γ)t∥w(0, t)∥2L2 (62)

This concludes the proof of Theorem 5.

V. NUMERICAL SIMULATION

In this section, we provide the numerical simulation for the
closed-loop system with event-triggered controller. Taking
the equilibrium density as ρ⋆h = 150veh/km, ρ⋆a = 75veh/km,
such that v⋆h = 29.16km/h, v⋆a = 13.32veh/km can be
calculated by the fundamental diagram. The relaxation time
is set as τh = 30s, τa = 60s. The pressure exponent value
is selected as γh = 2.5, γa = 2. The car-following gap are
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Fig. 2: The performance of ETC under sa = 16m
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Fig. 3: The performance of ETC under sa = 20m

sh = 5m, sa = 16m. The maximum area occupancy AOh =
0.9, AOa = 0.85 In addition, we choose ζ = 8 × 10−3,
σ = 1 × 10−4, η = 0.9, A1 = 2 × 10−2, A2 = 3 × 10−3,
A3 = 4 × 10−3, B = 9 × 10−3, and we also choose
ϱ1 = 2×10−10, ϱ2 = 2×10−9, ϱ3 = 1.2×10−12, ς4 = 0.01,
µ = 5× 10−4. We run the simulation on a L = 1000m long
road whose width is 6m and the simulation time is 450s.

The closed-loop results of the mixed traffic system under
the event-triggered controller are shown in Fig. 1. Fig. 1a
represents the density and velocity of the HV while Fig.
1b denotes the AV. It can be found that the event-triggered
controller stabilizes the mixed-autonomy traffic system. We
also provide a comparison between the continuous controller
using the backstepping method and the event-triggered con-
troller in Fig. 2a. The traffic management system does not
need to update the control input at each time-step by using
the event-triggered controller, therefore, the computational
burden has been reduced. The triggered times and the release
time interval are plotted in Fig. 2b.

We then test the different spacing settings of AV, we
run the simulation under spacing of AV sa = 20m. The
comparison between the continuous controller and the event-
triggered controller is shown in Fig. 3a. The triggered times
and the release time interval are plotted in Fig. 3b. The results
show that the traffic system tends to become more congested
with a larger space of the AV. The event triggered controller
must need to execute more times to make the system stable.

VI. CONCLUSIONS

The event-triggered control of a mixed-autonomy traffic
system is investigated. The traffic dynamics of the mixed-
autonomy system are represented by an extended ARZ PDE
model. A backstepping controller is designed to stabilize the
system, and a dynamic ETM is defined. The event-triggered
boundary controller is derived through this dynamic ETM.
Lyapunov analysis is applied to show the stability results
for the mixed-autonomy system with the event-triggered

controller. Numerical simulations are conducted to illustrate
the effects of the event-triggered controller. Future work
will focus on developing an observer-based event-triggered
controller for the mixed-autonomy traffic system.
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