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hyperbolic PDE and propose a control law using operator learning and the backstepping method.
Specifically, the backstepping kernels used to construct the control law are approximated with neural
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stability conditions with respect to the Markov-jumping parameter uncertainty and NO approximation
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1. Introduction

Boundary control of hyperbolic PDEs is widely applied to
engineering problems that require point actuation for spatial-
temporal stabilization, such as oil drilling (Wang & Krstic, 2020),
traffic flow (Yu & Krstic, 2022), gas pipes (Bastin & Coron, 2016).
Lyapunov-based control methods are widely applied including PI
control (Zhang, Prieur, & Qiao, 2019), feedback control (Karafyllis,
Bekiaris-Liberis, & Papageorgiou, 2018) and backstepping
approach (Krstic & Smyshlyaev, 2008). The PDE backstepp
ing achieves Lyapunov stabilization by Volterra spatial transfor-
mation and then eliminates destabilizing in-domain terms by
boundary feedback controller design. It involves solving kernel
equations for the invertible backstepping transformation, which
can be time-consuming and difficult for practical implementa-
tion. Over recent years, machine learning (ML) methods such as
Physics-informed Neural Networks (PINN) (Karniadakis et al.,
2021) and Reinforcement Learning (RL) (Yu, Park, Bayen, Moura,
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& Krstic, 2021) have been applied to develop efficient learning-
based models to solve PDEs and to accelerate the computation
speed. But they suffer from the generalization issues for change
of model parameters and initial conditions. Neural operators
(NO) have been proposed to learn the operator mappings of
functionals (Lu, Jin, Pang, Zhang, & Karniadakis, 2021) and then
were applied to obtain stability-guaranteed backstepping con-
trollers (Bhan, Shi, & Krstic, 2023a). In this paper, we will study
operator learning for stabilization of Markov-jumping hyper-
bolic PDEs, and the robustness of NO-controller to stochastic
parameters.

We consider hyperbolic PDE systems with stochastic param-
eters that are governed by a Markov chain. Stability analysis
and control problem of Markov-jumping hyperbolic PDEs have
been widely investigated (Amin, Hante, & Bayen, 2011; Bolzern,
Colaneri, & De Nicolao, 2006; Prieur, Girard, & Witrant, 2014;
Wang, Wu, & Li, 2012; Zhang & Prieur, 2017). The parameters
uncertainty is initially represented by switching signals that are
defined as a piecewise constant function and right-continuous.
The author dealt with the stochastic delays and then converted
the delayed system into a PDE-ODE system and designed the
controller to robustly compensate for the stochastic delay using
the backstepping method (Kong & Bresch-Pietri, 2022). For appli-
cation in traffic flow control, Zhang and Prieur (2017) designed
a boundary feedback law to stochastically exponentially stabilize
the traffic flow whose dynamics are governed by conservation
laws. Our previous work investigated the mean-square exponen-
tial stability of the mixed-autonomy traffic system with Markov-
jumping parameters, and the controller was designed by the
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backstepping method (Zhang, Yu, Auriol, & Pereira, 2024). How-
ever, both the Lyapunov design and the backstepping method
for PDEs with parameter uncertainties suffer the high compu-
tational cost problem as solving LMIs and backstepping kernels
is time-consuming. Therefore, it is relevant to adopt machine
learning tools to accelerate the computations for controllers that
are robust to the parameter uncertainties.

Backstepping control for PDEs was first proposed in Krstic
and Smyshlyaev (2008) with full-stated feedback control laws
and output-feedback control laws. Vazquez, Krstic, and Coron
(2011) proposed a boundary controller for a 2 x 2 hyperbolic
system and the well-posedness of the kernel equations used for
backstepping transformation was proved. Stabilization of higher-
order hyperbolic PDE systems, such as the n + 1 system and the
n+m system, was solved in Di Meglio, Vazquez, and Krstic (2013)
and Hu, Di Meglio, Vazquez, and Krstic (2016). The reader is re-
ferred to Vazquez, Auriol, Bribiesca-Argomedo, and Krstic (2026)
for a survey on backstepping. Recently, the mean-square expo-
nential stabilization of coupled hyperbolic systems with random
parameters was addressed in Auriol, Pereira, and Kulcsar (2023).
More precisely, it was shown through a Lyapunov analysis, that
a nominal backstepping controller was robust to random system
parameter perturbations, provided the nominal parameters are
sufficiently close to the stochastic ones on average.

With applications in traffic congestion problem, Yu et al. first
applied the backstepping control method for the Aw-Rascle-
Zhang (ARZ) traffic model of the hyperbolic PDE type (Aw &
Rascle, 2000; Zhang, 2002) and then extended the result to two-
class traffic, two-lane traffic, and cascaded traffic control (Yu &
Krstic, 2022). However, the aforementioned backstepping design
for hyperbolic PDEs needs to take a backstepping transformation
and solve kernel equations(another PDE) that are induced by the
backstepping transformation. Solving kernel equations is time-
consuming and requires an intensive depth of expertise in the
PDE field. Although an explicit solution can be obtained using
the power series (Vazquez, Chen, Qiao, & Krstic, 2023; Vazquez
& Krstic, 2014), it needs to define appropriate power series and
prove their convergence for the exact kernels. It may cause higher
computational burden.

Recently, an increasing number of learning-based methods are
applied to solve PDEs and control problems. PINN is proposed
for learning the dynamics of PDEs and solving the forward and
inverse problems of nonlinear PDEs (Karniadakis et al., 2021). But
PINNs need retraining when initial conditions change, which also
brings the problem of increased training time and complexity of
training settings. It only works in a specific set of parameters.
While RL lacks a theoretical guarantee of exponential stabil-
ity. The adaptability of PINN and RL can be poor for control of
PDEs under different conditions, in particular, the problem under
stochastic system parameters considered in this paper.

Compared with PINN and RL, NO exhibits the ability to learn
operator mapping of functionals, which makes it quite efficient
to solve the boundary control problem of PDEs (Lu et al., 2021).
Especially in approximating the backstepping kernels, the expo-
nential stability of the closed loop is guaranteed through the the-
oretical derivation. Bhan et al. (2023a) and Bhan, Shi, and Krstic
(2023b) adopted NO to accelerate computation speed for obtain-
ing control gains and control laws. For hyperbolic PDEs, Wang, Di-
agne, and Krstic (2025) adopted neural operators to approximate
the backstepping kernels and provided the stability of the 2 x 2
hyperbolic PDEs under neural operators. All the previous results
of NO above focused on adopting NO for control of the deter-
ministic PDEs. The stability results of Markov-jumping hyperbolic
PDEs under NO have not been explored. In this paper, we in-
vestigated the robust stabilization of NO for the Markov-jumping
hyperbolic PDEs. It was adopted to approximate the backstepping
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kernels and then the stability of the Markov-jumping hyperbolic
PDEs with NO-approximated kernels was analyzed.

The main contributions of this paper are twofold. First, we
propose a NO-approximated controller that guarantees robust
stabilization for hyperbolic PDEs with Markov-jumping param-
eters. To the best of our knowledge, this is the first theoretical
result establishing the use of operator learning for the robust
control of linear Markov-jumping hyperbolic PDEs. Different with
the exponential stability result in Amin et al. (2011) was obtained
through the condition that the spectral radius of boundary cou-
pling matrices should satisfy specific conditions for all switch
modes, this paper does not add constrains on the boundary cou-
pling coefficients thus we get the mean-square exponential sta-
bility of the PDE system. Second, we demonstrate the applicability
of our approach through a traffic congestion control problem, ad-
dressing freeway regulation under stochastic upstream demands.
The use of neural operators not only improves the computational
efficiency of solving PDEs but also ensures both system stability
and solution accuracy. Methodologically, the paper extends the
Lyapunov analysis proposed in Auriol et al. (2023) to encompass
NO-approximations.

Notation: We denote L*([0, 1], R) the space of real-valued
square-integrable functions defined on [0, 1] with standard I?
norm, i.e. f?r any f e I%10,1],R), we have |f[2 =

fol F2(x)dx)” . The supremum norm is ||-||..||-|| denotes the stan-

dard Euclidean norm. E(x) denotes the expectation of a random
variable x. For a random signal x(t), we denote the conditional
expectation of x(t) at the instant t with initial condition x(0) at
instant s < t as Es xoy(x(t)). The set ¢"([0, 1]), n € N denotes the

space of real-valued functions defined on [0, 1] that are n times
differentiable and whose nth derivative is continuous.

2. Problem statement
2.1. System with Markov-jumping parameter uncertainties

We consider a stochastic 2 x 2 linear hyperbolic system

Oeu(x, £) + A(t)0xu(x, t) = o T (t)v(x, t), (1)
orv(x, t) — u(t)owv(x, t) = o~ (t)u(x, t), (2)
with boundary conditions

u(0, t) = ¢(t)v(0, t), (3)
v(1,t) = o(t)u(1, t)+ U(L), (4)

where the spatial and time variables (x, t) belong to {[0, 1] x RT}.
The stochastic characteristic speeds A(t) > 0 and wu(t) > O are
time-varying. The in-domain couplings o *(t), o ~(t) and bound-
ary couplings ¢(t), o(t) are also stochastic and time-varying. The
different parameters are random independent variables. The set
of the random variables is denoted as & = {A, u, 07,07, 9, 0}.
Each random element X of the set & is a Markov process with the
following properties:

(1) X(¢t) E_{Xi,ie {1,...,rx}l,ix e NwithX <Xy < --- <
X, < X.

(2) The transition probabilities P,-’j‘(th t;) describes the proba-
bility to switch from X; at time t; to X; at time t,. The i, j
are also in the finite modes of the Markov process with
((G,j) € {1,...,1x}*>,0 < t; < t). In addition, Pi;((ﬁ, ty)
satisfies PY : R* — [0,1] with Y X, Pf (t;,t,) = 1.

Pix follows the Kolmogorov equation (Hoyland & Rausand,

2009; Kolmanovsky & Maizenberg, 2001; Ross, 2014)

X
8p}(5.0) =~ ORY(s. 0+ Y P, 00
k=1
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Pi(s,s) =1, and Pj(s,s) = 0 for i #, (5)
where 7; and ¢ = Y, 7} are non-negative valued

functions such that for any ¢, tf
bounded by a constant ty.

(3) The realizations of X are right-continuous.

= 0. The functions ¢ are

We assume that the lower bounds for the characteristic speed
A, pu are positive. For each X € &, we define Tx € {Xy, ..., X}
as the set of realizations for the variable X. We denote by ry =
|Tx| the number of modes of X € &. Since the parameters
are independent, the joint mode set is the Cartesian product

Ro={1,....n) x {1, x {1, ..., e} x {1,...,1,-} X
{1,...,14} x{1,..., 15}, whose cardinality is r = r, X, X I'p+ X
To— X Ty X Ip. Let 8(t) € (RT)? x R* be defined by

8(t) = (M), pu(t), (1), (1), (1), 0(t)) . (6)

8(t) is a set including all Markov-jumping parameters and it is
also a big Markov process due to the independence of different
system parameters. The transition probabilities are obtained from
the those of G. We also define the modes indices of each element
inGasje{l,...,1x},X € 6, ie, §(t) = § means the elements
X is mode j at time instant t, X(t) = X;,.

2.2. NO-approximated nominal control law

Let us first consider the following 2 x 2 linear hyperbolic
system without stochastic uncertainty, called nominal system

deUnom(X, £) + Ao dxlnom(X, t) = 0 Vnom(X, t), (7)
Ot Vnom(X, t) — oOxUnom(X, t) = 0 Unom(X, ), (8)
with boundary conditions

Unom(0, t) = @oUnom(0, t), 9)
Vnom(1, t) = Qolnom(1, t) + U(t), (10)

where the nominal characteristic speeds Ag > 0 and ug > 0
are constant. In-domain couplings cro+ , 0, and boundary cou-
plings ¢, 0o are also assumed to be constant. We also define
the nominal set 8o = (o, o, 0y 0y » 90, 00) € (RT)* x R?
including all the nominal parameters. Let 4 C (R")? x R*
denote a bounded, closed set of admissible nominal parameters
on which we carry out both analysis and learning as U/ = {8y =
(Ao, Ho, 95, 05 90, 00) = ho € [AALpo € [ 7 |og| =
7, lpol < @, ool < o} with fixed constants 0 < A < A, 0 <
w < m and positive bounds &, ¢, p. All regularity and Lipschitz
constants below depend only on /. It corresponds to the system
parameters under the nominal mode. The function U(t) is the
boundary control input that is given as:

1
U(t) = — oottnom(1, £) + / K1, & unom(&, t)d§
0

1
+ / K*(1, £ )vnom(E, £)dE. (1
0

where the backstepping kernels K%, K¥’e ¢! are defined on the
triangular domain 7 = {0 < & < x < 1}. The kernels can be
obtained by solving kernel equations in Vazquez et al. (2011).
Using the control law (11), the closed-loop system (7)-(10) is
well-posed and exponentially stable in L? norm (Bastin & Coron,
2016; Coron, Hu, Olive, & Shang, 2021). We have the following
theorem.

Theorem 1 (Vazquez et al, 2011, Theorem 1). Consider the sys-
tem (7)-(10) with initial conditions u®  and v® , and control

nom nom’

law (11), then the equilibrium u = v = 0 is exponentially stable in
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the L, sense, the equilibrium is reached at finite time t; = % + /%0

We now introduce an operator that maps (for a given nominal
set of parameters §,) the nominal system parameters to the
corresponding backstepping kernels. This leads to the following
lemma:

Lemma 1. The kernel operator K: U — (C(T))* defined by
K(8o)(x, ) =: (K", K", K", K") is locally Lipschitz. More pre-
cisely, there exists a constant ¢;; > 0, depending only on the set
U, such that for all 8, and 8, € U, we have

1C(8) — KW ierirp < Cullsa — 8ol (12)

where ||-lle1ry = - lloeiry + 18x( ey + |19 O oy

Proof. For each fixed &y, the coupled kernel equations asso-
ciated with (12) admit a unique solution K(8y) € (Cl(T))4
and depend c!-smoothly on the parameters (Qi, Zhang, & Krstic,
2024; Vazquez et al,, 2011; Wang et al., 2025). Moreover, on any
bounded parameter set ¢/ C (R*)? x R* there exists M;; > 0 such
that [|K(80)llc1ys < My, for all & € u (Di Meglio et al, 2013;
Wang et al,, 2025). Denote K, (resp. K;;) the kernels associated
with a set of parameters 8, (resp. &). Denote AK™ := K; — K. In-
tegrating along characteristic lines yields and taking C!(7")-norms
gives the following estimate (Vazquez et al,, 2011):

X
LAK llerry < €110 — 81l + & / IAK [l 172,05,
&

where ¢/, ¢4 > 0and 7; := {(n,3) € 7 : 3 <y < s} The
Volterra-Grénwall inequality on 7 then yields

1AK o1y < cullSa — 8yll. (13)

for some c;; > 0. Applying this to each of the four components,
we have [|K(84) — K(8p)llc1¢(me =< Cullda — pll. This completes
the proof of Lemma 1.

Remark 1. The local Lipschitz continuity of K established above
implies that, on any bounded parameter set ¢, K is continuous
as a map into (C'(7))* Consequently, universal approximation
results for operator-learning architectures (e.g., DeepONet) guar-
antee the existence of a neural operator to approximate the
mapping.

From Lemma 1, the kernel operator X maps the system param-
eters to the backstepping kernels, such that there exists a neural
operator approximating the kernel operator K, then we have the
following lemma:

Lemma 2. For all € > 0, there exists a neural operator K such that
forall (x,&) e T,

sup [(80)(x. £) — K(S0)(x. &)|| < €. (14)

Proof. The proof could be easily obtained using the results in
Lemma 1 and following same steps in Bhan et al. (2023a) and
Deng, Shin, Lu, Zhang, and Karniadakis (2022).

Remark 2. The maximum approximation error € is defined as
the error between the NO-approximated kernels and the exact
kernels. The error is related to the network size, neural layers and
neurons in each layer of the designed network. The selection of
these parameters is empirical. Theoretically, the € can be chosen
small enough given enough computing resources.
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Using the neural operator K, we can easily obtain the NO-
approximated nominal control law

1
Uno(t) = — cotnom(1, ) + / R¥(1, & o (£, £)dE
0

1
+ / K™ (1, € )vnom(&. ). (15)
0

Now we first state the well-posedness of the closed-loop system
with Markov-jumping parameters under the NO-approximated
kernels. We have the following Lemma:

Lemma 3. For any initial conditions of the stochastic system
u0(x), v°(x) e I2([0, 1], R?) and any initial states 5(0) for the
stochastic parameters, the system (1)-(4) with the NO-approximated
nominal control law (15) has a unique solution such that for any t,

Ej0,000.0000.501(1UC 0, v(-, D]1%) < 0. (16)

Proof. The proof of the well-posedness of the system under the
NO-approximated backstepping kernels can be easily obtained
by extending the results from Auriol et al. (2023), Zhang and
Prieur (2017) and Zhang et al. (2024). For every event of the
stochastic process X(t), t < 0 is a right-continuous function
with a finite number of jumps in a finite time interval. So there
exists a sequence {t;y : k = 0,1,...} such that t; = 0O,
lim;_, o, tx — o0. Starting from the initial time instant, we can
fix the random parameter at the first time interval. The control
law is obtained by (15). We have stated the well-posedness and
the regularity of the NO-approximated backstepping kernels in
Lemma 2. The NO-approximated backstepping kernels have the
same functional form with the nominal kernels. Therefore, the
initial-value problem of system (1)-(4) under the control law (15)
has one, and only one solution using the results in Bastin and
Coron (2016, Theorem A.4) and Coron et al. (2021, Appendix. A)
as the system in this paper is a particular case of them. Then
iterating the process for each time interval on the whole time
domain, we can get the stochastic system has a unique solution
for any t > O that satisfies (16). This completes the proof of
Lemma 3.

2.3. Main results

In this section, we state the main results of our paper. The
objective is to prove that the NO-approximated nominal control
law (15) can still stabilize the stochastic system (1)-(4), providing
the nominal parameters are sufficiently close to the stochastic
ones on average and a small approximation error €. In other
words, we want to show the following robust stabilization result.

Theorem 2. There exists a constant ¢* > 0 and a small enough
approximation error € > 0, if for all time t > 0 and X € &,

Z]E[O,X(O)J (]X° = x(0)]) < ¢, (17)

Xe6

the closed-loop system (1)-(4) with the control law (15) is mean-
square exponentially stable, namely, there exist constants k =
k(¢*) > 0, ¢ = ¢(€) > 0, independent of t, such that

Epo,wxonson (1w, 0II%) < k(@*)e™ < lw(x, 0)II2, (18)

where w(x, t) = (u(x, t), v(x, t)) € (L*([0, 1], R))*.

Remark 3. Compared to Auriol et al. (2023), the system con-
sidered in this work involves two sources of uncertainty: the
Markov-jumping parameters and the approximation error intro-
duced by the neural operator. These two uncertainties, denoted
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respectively by ¢ and ¢, are independent. In the proof of the
main theorem, explicit bounds are provided for both the Markov-
jumping variation, denoted ¢*, and the approximation error e.
Due to the inherent conservatism of the Lyapunov-based anal-
ysis, the bound ¢* is mainly of practical relevance. The stated
bounds are conservative, and the result should be interpreted
qualitatively, establishing the existence of robustness margins. In
particular, a smaller value of ¢* leads to faster convergence of
the stochastic system, and the same holds for the approximation
error: reducing € improves the convergence rate.

3. NO-approximated kernels for stochastic system

In this section, we give the details of the backstepping trans-
formation and derive the target system under NO-approximated
nominal control law. Following the backstepping method pro-
posed in Vazquez et al. (2011),

a(x,t):u—/XK““(x,S)u—i-I““(X,S)vds, (19)
0

Blx,t)=v — fx K" (x, E)u+ K (x, §)v dg, (20)
0

where these kernels K**, K"0 e ¢! defined on the same trian-
gular domain 7 are obtained by solving the associated kernels
equations in Vazquez et al. (2011). Then we get the following
stochastic target system,

(X, t) + A(t)dxe(x, t) = fi(8(E))v(x, t) + f2(8(£))B(O, t)

+ / f38(t), x, §)u(§, t) + fa(8(t), x, §)v(§, t)d§, (21)
0

acB(x, t) — pu(t)oxB(x, t) = g1(8(t)ulx, t) + g2(5(t))B(0, t)

+ / g3(8(t)a X, S)U(Sa t) +g4(5(t)7 X, S)U(f, t)di‘_, (22)
0

with boundary conditions

(0, t) = ¢(t)B(0, ), (23)
B(1,t) = (o(t) — cou(1, t)

1
_/ (k1 6) = k1, 6)) ue. o
0
n (KW(Ls)—R”“(LS)) V&, t)dE, (24)

where fi = (a+(t) — 057'\&21%”). L = (M(t) - 7)\“%%“0)

K x,0)fs = (Kog —07(0) K™ (x.6).fi = Gro — M0) K™

(%, &)+ (1alt) — o) %K™ (x, £)— (0¥ (t) — o) K™ (x, ), and g1 =

o (1) = K00 g = (—AO(0) + W02 ) K(x, 0), g5 =

(u(t)—uo+)1<,§’“(x, §)—(A(t)—20)K (x, §)— (0™ (t)— 0y )K™(x, &),
g4 = (”OT‘Z(” - 0+(t)> K"(x, &). The backstepping transforma-
tion (19)-(20) is a Volterra type so that it is boundedly in-
vertible (Yoshida, 1960). Therefore, all the terms that depend
on (u,v) in the target system could be expressed in terms of
(e, B) using the inverse backstepping transformation associated
with (19)-(20). We chose to keep them as functions of (u, v) to
avoid complex expressions. As it will be seen, these expressions
are convenient for the robust analysis. Thus, the target system
is simpler in the sense that it simplifies the robustness analysis
that will be carried out in the next section. Next, we bound all
the terms in the target stochastic system. Due to the invertibility
of the backstepping transformation (19)-(20), the states of the
stochastic target system and the original states have equivalent
I? norms, namely, there exist two constants m; > 0 and m, >
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0 such that myfw(x, ), < [IE(x 1)
where Z(x,t) = (a(x, t), B(x, t))
following lemma:

< myflw(x, f)||fz,
e (I%([0, 1], R))*>. We have the

Lemma 4. There exists a constant My > 0, such that for any
realization of X(t) € &, for any (x,&) € T, and i € (1,2, 3,4},
we have the following bound

) <Mo Y [X°— (25)
Xe6

|i(8(E) < Mo Y [X° — (26)
Xe6

Proof. For+ the bound of the functions, we have [fi((t)) <
max{1, Aoiﬁ } Y xes !XO—X(t)|. For the function f,(8(t)),

R0 < max{1, 0, 0%y sup K™ (x, )] Ty [X° — X(1)]-

For function f3(8(t)), we have |f3(8(t))] <

%
(1 + ﬁ)SUPT
K™ (%, &) Y yes X0 — X(t

)’. Using the same method, for f4(4(t)),
we get [f4(8(1))] < max{supT 1K™ (x, ), sup || B K™ (-, £)
supr 1K™ (-, I Y yee |X0 t)| The backstepping kernels K~
are well-defined and bounded such that their derivatives are also
bounded and well-defined. For the functions of g;(§(t)), we can
use the same method to derive the bound of them. This finishes
the proof of Lemma 4.

’

4. Lyapunov analysis for the stochastic system

In this section, we will provide the Lyapunov analysis of the
system under the NO-approximated control law to show that the
system is mean-square exponentially stable. The objective is to
prove Theorem 2. To do that, we first need to define the Lyapunov
candidate and then conduct the Lyapunov analysis to finish the
proof.

4.1. Derivation of Lyapunov functional

The previous section has proved that the nominal system
with nominal controller is exponentially stable. For the stochastic
target system, we consider the following stochastic Lyapunov
functional candidate as

v(z,5) fl € 2, )+ aS p2(x, 1) (27)
=,8)= a“(x,t)+a X, t)dx.

o At) u(t)
If the system stays at mode j where §(t) = §j, the Lyapunov
candidate can be also written in Vj(t) = 01 ekj a?(x, t) +

aeﬂj B2(x, t)dx. The Lyapunov candidate is equivalent to the L2
nor]m of state &'(x, t), there exist two constants m; > 0 and
my > 0 that ms||Z|?, < V(&,8(t)) < my4]|Z||7,. And then we
consider the infinitesimal generator L of the Lyapunov candidate
V defined in (27) as (Ross, 2014)

8) =limsup L( E(V(E(t 4+ At), §(t + At)))

At—0t

— V(&(t), 8(1))). (28)

Also, for the infinitesimal generator of the Lyapunov candidate at
each Makrov mode j € {1, ..., r} where §(t) = §;, we denote

Y sm@)+ Y (@) -

dz
Lenr

(e,

LV(E) = Vi( &) Tie(t), (29)

[1
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where € € {1, ..., r} and the operator h; is defined as

—dka(x, £) + fi(8)v(x, £) + f2(8)B(0, t)
+ [o f3(85, %, (&, ) + fa(8j, x, & (&, t)dE
hi(&) = . (30)
Wik B(x, t) + g1(5)ulx, t) + g2(6;)B(0, t)

+ o g3(8j, x, Eu(E, t) + 8a(5), x, E)V(E, t)dE
To prove Theorem 2, we first give the bound of the probability of

the infinitesimal generator of the Lyapunov candidate. We have
the following lemma:

Lemma 5. There exists g > 0 such that for all approximation error
of NO O < € < €, there exists n > 0, M, > 0, M3 > 0 and ms > 0
such that the Lyapunov functional V(t) satisfies

Py, V() < ~V(©)(n — Ms2(0)

j=1

= (M2 + Msre*) DR (X0 - X(0)]))
Xe6

+ (msB(X° — X(0)]) — e F)a?(1, 1), (31)

where the function Z(t) is defined as:

r

2(t) =YY |X° = Xe| @Pu(0, ) + cPu(0, 1)) .

(=1 Xe6

Proof. To prove this lemma, we first compute the term %(EJ, 8;)
hj(&) of the infinitesimal generator of the Lyapunov candidate.
Supposing that the system stays at mode j at some time t, such
that §(t) = §;, we have the following result

v

1
dv( 5)hi(E) = —vvj(t)+/ 25
0 A

d=z

( 1(8)v(x, t) + f2(8;)B(0, ) + /0 f3(8, %, §Ju(&. t)

1

(x. t)

2a >
Zeli"B(x, t)
0 Mj

(1m0 0+ £28)B(0, 1)

+ fa(8;, x, E)v(E, £)dE) dx +

+ / g3(8]s X, é)u(%-’ t) +g4(8j’ X, S)U(Sv t)d‘i: ) dx
0

+ (¢f —a)B*(0,t)—e "a’(1,1)

+ aeti ( (0j — go)a(1, t)

1
+ (o —Qo)/ K™(1, E(E, 6) + K*(1, £l )
0
1
- / (K™(1,€) — R™(1, £)u&. 6)
0

2
+ (K™(1,6) — K™ (1, &) (é,t)de?) : (32)

Then we use Young’'s inequality and the bound of functions in

Lemma 4, for the term fol %ei’\iixoz(x, t) f1(8;)v(x, t)dx, we have

/12
0)\4

J

e i a(x, O (5)u(x, 0)|dx

(MOZ|X —x|> (1+—> V(t). (33)
Xe6
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We denote c; arbitrary positive constants in the next. For the
second term, using the same method, we get

1 Y x
/ %e’*’j a(x, £)f(8;)B(0, t)|dx
0 J
1
kmgq (MOXE:G‘X —x|>
+<M Z|X°—X|)ﬁ(0t (34)
Xes

For the third term f3(6;), we have
1

/ 3e 4 ax t/fgéj,xé) (&,t)

0 )»j

< (MOZ |x° —x|) <1 + 7> V(t). (35)

Xe6

Also, the fourth term f4(5;) can be bounded by

I
OA.

2 e W atx, 1) f Fa(35 %, EN(E,
J

1
< (MOZ X0 - X; ) (1 + m—1) V(t). (36)

Xe6

Next, we will give the bound of the functions g;(5;) to ga(5;).
Using Young's inequality and the results in Lemma 4 again, we
get the results for the four functions. For the first term of gi(5;),

Jo 1577 Blx Dea(@utx. Oldx < (Mo Yo IX° = X)(1 +

mil)V(t), where d; is the bound of the term e"l . For gy()),

f; | 267" B(x, )ga(8)B(0, 1)ldx < 721 (Mo Yyeq IX° — X1+
A V(O + U2 (Mo Yoy 1X0 — Xi1)BX(0. 0). For g3(8y), [y |2
x,r Jo 8308, x, )&, O)dgldx < 2L (Mo Yy o X0 — X511 +

W(e). For gu(dy), [y 12" Bx, ) i galdy, x, ENu(E, )deldx <
Qﬁ; Mo Yoxee X0 = X1+ 2 )V(0),
Denoting the last term of (32) as A = ae”
(01 — o) fyy K™(1, £)u(&, £) + K™ (1,£) v(&, t)de— [, ( K”” 1,6)—
KU1, E)u(E. £) + (K"”(l,é)—K””(LE))v(éJ)dé)
basic inequality (a + b’ < 2(a® + b*), and then apply Young’s
inequality, thus A < 2ae“7[((,o] po)a(1, t)+(,oj—,oo)f0l K"™(1,&)

u(g, t)+K"(1, £)u(&, t)dg) fo (K™(1, &)= K"™(1, &)u(g, t) +
(K'"(1,&) — k””(l, £))(£, t)d€)?]. Expending the first term of A
and applying Young’s inequality and Cauchy-Schwarz inequality,
and then applying the inequality (a + b)?> < 2(a* + b?) and
maximum approximation error ¢ to the second term, we get

((Q‘—Qo) 10+

, using the

v 2(1+ ¢c3)(p; — po)?
ASZae“J'((]—i-Cg)( 100)2 2(1 t) ( + 3)(101 pO)
mimscCs
x max{ sup ||K““(1,x)”2, sup HK”“(],X)HZ}V(t)
xe[0,1] x€[0,1]
2¢?
+ V(t)).
mims

Therefore, we have the following result,
dv
dz

+ (200 (1 + e3)6l0; — 00) — € 7 ) @(1,0) (37)

(2, 8)h(E) < —vVi(t) + c4€? V(1)
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+ My 37 [XO = X |V(O) + (s + 0F — a)B%(0, 1),

Xe6

_ 3Mp(mq+1) Mo 3Mpad{(mq+1) Mopadi(m1+1)
where M, = Amqm3 + Am3cq + pwmyms pmymscy +
v
4ae’Y p(1+c3) 2 2
“mymses 3 % max{supyeo 1) IIK* (1, X)II*, supycjo.1; 1K**(1, x)[I°},
v
I
€4 = ‘r‘;’fm; Cs = (Moc1 + MO“‘“Q ) xee |X — X|. There exists a

n denoting the minimal decay rate of all possible modes for the
Lyapunov functionals such that —vVj(t) < —nV( ). Choosing the
designed parameters cs and a, such that cs + (p] —a < 0 always
holds. Then we get the following result

dv
15 (8 0(E) = V(D) + Mo Y X7 = X5[v(e)
Xe6
+ (20711 + 3)dl; — 00) ¢ ) @(1,0) (38)

where 7j =  — c4€2. The approximation error ¢ is small enough
such that 7 > 0. For the second term of the infinitesimal
generator, applying the mean value theorem to the functions
ot el

e T we have ), (V[( )= Vi(& )) Tje(t)
M3 S D ks Tit |X X¢|V(t), where M is defined by Ms

() o (1)

ms3 AZ m u
infinitesimal generator as

LV(t) < —iV(t)+ My Y [X° = X;|v(t)
Xe6

+ (207 (1 + e3)a(0; — 00) -

1A

. So we get the bound of the

e_%l)ozz(l,t)
+ M3 Y Y e |x — Xe| V(o). (39)

=1 Xe6

Next, we will compute the expectation of the infinitesimal gen-
erator, defined by L = Z 1 P;(0, t)L;V(t). Using the triangular
inequality and the I(olmogorov equation, we have

L= Py0, LV(t)
j=1

- (77 — (My + Msrt*) Y E(|X —x0|)> v(t)

Xe6

+ Ms Y ) X0 — X, [(0Py(0, ) + GPy(0, D)V(1)
=1 Xe6
+ (mSE(|X0 —X|) - e"Tf) @?(1, 1), (40)

where ms = 2ae’(1 + ¢3)0. Let 2(t) = Yy, Y yee |X° — X
(9:P;(0, t) + ¢;P;(0, t)), we get

ZP,,OtLv ()(ﬂ—M3Z()
_ (M2+M3rr*)ZIE —X(t)|)>
Xeb
+ (msE(|X° = X(0)]) — e 7 )a®(1, 1), (41)

This finishes the proof of Lemma 5.
4.2. Mean-square exponential stability
Previous sections give the bound and expectation of the in-

finitesimal generator, we will prove the mean-square exponential
stability of the stochastic system under the NO-approximated
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kernels in this section. In this section, we aim to prove Theorem
2.

Firstly, let us denote w(t) = 1 — M3Z(t) — (M + Msrt*)
Y xes E(|X° = X(t)|) and define another functional #(t) =
elo “OWy(t). Using Lemma 5, we could always find a ¢* smaller

= =V(Oa(t), (42)

> Py(0, DLV(E)
j=1

and then we take expectation of the inequality, we find that
E (Y1 Py(0, O)L;V(t)) < —E(V(t)o(t)), and then we get that
E(LV(t)) < —E(V(t)w(t)). So we get E(LH(t)) < 0. Then we apply
the Dynkin’s formula (Dynkin, 2012),

E(H(t)) — H(0)=E </0t LH(y)dy) <o0. (43)
For E(H(t)),

E(#H(t)) > E (V(t) —M3*+ [ (i—(My+2M3rt* )¢«)dy> , (44)
where ¢* > WMW*) so the following inequality is obtained
E(H() 2 E (V(oe e +3e). (45)

We already know that E(#(t)) < #(0), thus we have
E(V(t)) < "% e ¢'v(0), (46)

where ¢ = ﬁ . This finishes the proof of the mean-square expo-

nential stablllty of the stochastic system, namely, Theorem 2 is
proved because V(t) has the same equivalent norm with w(x, t).

Remark 4. The approximation error € and the Markov-jumping
uncertainty (bounded by ¢*) originate from different mecha-
nisms: the former arises in the boundary controller due to neural
operator approximation, while the latter stems from stochastic
mode transitions governed by the Kolmogorov equation. Conse-
quently, their modeling can be decoupled. However, both uncer-
tainties jointly affect the Lyapunov convergence rate, requiring
simultaneous smallness for stability. In particular, larger stochas-
tic variations (larger ¢*) necessitate a smaller € to preserve the
decay rate, indicating an implicit trade-off between the two.
The effective convergence rate 7 = 1 — c4€’ is a positive
constant determined a priori by the system parameters and ap-
proximation accuracy. It does not depend on the current state
and remains constant throughout the system evolution. In the
proposed proof, we first tune ¢ to ensure that 7 > 0, and only
then bound the stochastic variations to guarantee mean-square
stability. Consequently, the maximal admissible bound on the
stochastic variations implicitly depends on €. Once ¢ is chosen,
we obtain a quadratic dependency between ¢ and ¢* by ¢* >

W. Alternatively, one could adopt a different strategy by

first fixing the maximal bound and then adjusting e accordingly.
5. Application to traffic congestion problem
5.1. Traffic flow model

In this section, we provide the simulation results of the
stochastic system with the NO-approximated kernels. Consider-
ing the following linearized ARZ system

» N * * _ v* ~
a0+ vt - T =g 5000
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q (v p) - p
St R L) (47)
v L*
80, £) — (yp" — v*) i £) = 22—, 1)
Lv*
p* .
- ey, (48)
q
with boundary conditions
- - Lt
q0.0= 0.5 0 = 9 Ly, (49)

where q(x, t) is the traffic flow, v(x, t) denotes the traffic speed,
defined in the spatial and time domain (x, t) € [0, L] x [0, +o00).
The equilibrium state of the system as (g*, v*), and the small
deviations from the equilibrium points are defined as q(x, t) =
qlx, t) — q*, v(x,t) = v(x, t) — v*. The traffic density is defined
by p(x,t) = gg‘(g v is the free-flow speed. The reaction time
¢ denotes how long it takes for drivers’ behavior to adapt to
equilibrium speed. The traffic pressure is defined by p = % ( ).
y denotes the drivers’ property which reflects their change of
driving behavior to the increase of density. Then we take the
coordinate transformation to write the sgstem in Riemann coor-

dinates, w = exp () (E] —q* (Ul y}), (P 7. Then

the control input U(t), implemented by varying speed limit at

the outlet of the road section, is given as Uagz(t) = ro(L, t) +

rfo KL= §)8(¢, 0)ds — §(L, 1) — 00 fy KL, g)en a6, 005 +
£

(pof KY(L, é)eF~(S t)d§, where r = q*(-% 1 ). The traffic

den51ty and speed would converge to the equ1H3r1um density

p* and speed v* with this control law at finite time. The ARZ
system then transformed into boundary control model which

v,0=

*

aligns with (7)-(10) and the coefficients are 1y = v*, uo =
X 17
]/p —v* O’J— = 0 U = —*e wx, Qy = ’)'/p ,00 = e w*,

The ARZ trafflc system will be affected by the stochastlc demand
from upstream traffic flow. We consider the equilibrium density
p*(t) is stochastic and it follows the Markov process described
in (5). Then the system parameters are all become stochastic
due to the stochastic equilibrium density. Therefore, we can treat
(A(L), pu(t), o (t), o~ (t), o(t), o(t)) as a whole Markov process.

5.2. Simulation configuration

We run the simulation on a L = 500 m long road section
and the simulation time is T = 200 s. The free-flow speed is
vy = 144 km/h, and the maximum density p, = 160 veh/km, the
nominal equilibrium states are chosen as p} = 120 veh/km, v* =
36 km/h. The reaction time ¢ = 60 s, and y = 1. We use sinu-
soidal inputs to denote stop-and-go traffic congestion on the road
as p(x,0) = p* + 0.1sin (%) p*, v(x, 0) = v* — 0.1sin (Z) v*.
Considering the equilibrium density of the system as stochastic,
we set five different settings of p* as (p7 = 90, p; = 118, p} =
120, p; = 122, p7 = 150). The initial probabilities are set as
(0.02,0.32,0.32,0.32, 0.02), the transition rates t; are defined
as

0, ifi=j

20, ifie{l,5}

10, ifie{2,3,4},je{1,5}

10 + 20 cos (0.01(i + 5j)t)?, others
Using the above settings, we numerically solve the Kolmogorov
forward equation and get the results of the probability of each
mode in the whole time period. The probability evolution is
shown in Fig. 1. We adopted the DeepONet framework (Lu et al.,

2021) to train the neural operators in this paper. The DeepONet
framework consists of brunch net and trunk net which can learn

Ti(t) = (50)
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Fig. 1. The probability evolution and states reached in simulation time.
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Fig. 2. The open-loop density and speed evolution.

the different components of backstepping kernels. The input of
the brunch net are the parameters of the ARZ system in the
nominal mode, that is, Ag, Ko, 00+, 0, » @0, and go. The input of
the truck net is chosen as the triangular domain grid.

To generate training dataset, we randomly sample the nominal
equilibrium density p* in the interval (90 veh/km, 130 veh/km)
and calculate the corresponding nominal parameters related to
the equilibrium density. And then using numerical method to
solve backstepping kernel equations. Finally, we obtain the in-
put parameters Ao, (Lo, cfo+ , 0, » %0, 0o and the exact backstepping
kernels K"(x, &), K*V(x, £). The input-output pairs constitute the
dataset. The dataset is divided into training dataset and testing
dataset with the ratio of 9:1. All code and results necessary
for reproducibility are provided openly at https://github.com/
curryzyang/NeuralOperator4RobustStabilization.

5.3. Simulation results

After the trained model is obtained, we test the model per-
formance under the system with Markov-jumping parameters.
The results of the open-loop density and speed evolution of
the stochastic system are shown in Fig. 2. The initial condi-
tions and boundary conditions are denoted by a blue line and
a red line, respectively. The open-loop density and speed of the
stochastic system all oscillate during the simulation period. The
results of the closed-loop with NO-approximated backstepping
kernels are shown in Fig. 3. It shows that the nominal con-
troller with NO-approximated backstepping kernels successfully
stabilizes the stochastic system. The traffic density and speed
oscillations are removed after about 120s. We also compare the
density and speed between the nominal controller and the nomi-
nal controller with NO-approximated backstepping kernels. The
density and speed error is shown in Fig. 4. The density and
speed errors are large and also oscillate at the initial stage of
the simulation, then the error becomes small. The maximum
density error is 4.04 veh/km while the maximum speed error is
1.31 km/h.

The kernels obtained by NO and the numerical method lead
to a different control input of the stochastic system. The control
input for the ARZ system is obtained by integrating the pro-
duction of kernels and traffic states of the stochastic system.
The control input of the nominal controller with backstepping

Table 1
The error of backstepping kernels and traffic states.

Max absolute error Mean absolute error

Kv 5.9604 x 107> 3.0066 x 107>
KY 5.9519 x 107> 2.2160 x 107
0 4.0456 0.2450
v 1.3119 0.0476

kernels and NO-approximated kernels are shown in Fig. 5(a).
Under different control inputs, we also compared the state norm
of the traffic system, including the stochastic system with the
nominal controller and the stochastic system with a nominal
controller accompanied by NO-approximated kernels, as shown
in Fig. 5(b). From the comparison of control input and state norm,
it is revealed that the nominal controller with NO-approximated
kernels stabilizes the stochastic traffic system with small errors
compared with the nominal controller with backstepping kernels.
The statistical errors of kernels and traffic states are stated in
Table 1. After training, we take 100 trials to test the computation
time of different methods. The average computation times for
the backstepping and neural operator are 5.9899 x 1072 s and
1.7107 x 10~* s. It shows that the neural operator is 350 x faster
than the backstepping method.

6. Conclusions

In this paper, we investigated the mean-square exponen-
tial stability of the hyperbolic PDEs with Markov-jumping pa-
rameters under the nominal controller constructed with NO-
approximated backstepping kernels. We use neural operators to
approximate the nominal backstepping kernel gains. The Markov-
jumping hyperbolic PDE system with the NO-approximated con-
trol law achieves mean-square exponential stability, provided
the stochastic parameters are close to the nominal parameters.
The theoretical result is obtained through the Lyapunov analysis
and it was applied to freeway traffic congestion mitigation. The
simulation results demonstrate that the neural operator stabilizes
the stochastic system with a 350 x computation speed faster than
the numerical method. Future work would focus on the observer
design for the stochastic PDE system and extension to n + m
systems.


https://github.com/curryzyang/NeuralOperator4RobustStabilization
https://github.com/curryzyang/NeuralOperator4RobustStabilization
https://github.com/curryzyang/NeuralOperator4RobustStabilization
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Fig. 3. The closed-loop density and speed evolution.
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Fig. 4. The error of density and speed evolution.
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Fig. 5. The comparison of control input and state norm.
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