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 a b s t r a c t

This paper addresses the problem of robust stabilization for linear hyperbolic Partial Differential 
Equations (PDEs) with Markov-jumping parameter uncertainty. We consider a 2 × 2 heterogeneous 
hyperbolic PDE and propose a control law using operator learning and the backstepping method. 
Specifically, the backstepping kernels used to construct the control law are approximated with neural 
operators (NO) in order to improve computational efficiency. The key challenge lies in deriving the 
stability conditions with respect to the Markov-jumping parameter uncertainty and NO approximation 
errors. The mean-square exponential stability of the stochastic system is achieved through Lyapunov 
analysis, indicating that the system can be stabilized if the random parameters are sufficiently close to 
the nominal parameters on average, and NO approximation errors are small enough. The theoretical 
results are applied to freeway traffic control under stochastic upstream demands and then validated 
through numerical simulations.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Boundary control of hyperbolic PDEs is widely applied to 
engineering problems that require point actuation for spatial–
temporal stabilization, such as oil drilling (Wang & Krstic, 2020), 
traffic flow (Yu & Krstic, 2022), gas pipes (Bastin & Coron, 2016). 
Lyapunov-based control methods are widely applied including PI 
control (Zhang, Prieur, & Qiao, 2019), feedback control (Karafyllis, 
Bekiaris-Liberis, & Papageorgiou, 2018) and backstepping
approach (Krstic & Smyshlyaev, 2008). The PDE backstepp
ing achieves Lyapunov stabilization by Volterra spatial transfor-
mation and then eliminates destabilizing in-domain terms by 
boundary feedback controller design. It involves solving kernel 
equations for the invertible backstepping transformation, which 
can be time-consuming and difficult for practical implementa-
tion. Over recent years, machine learning (ML) methods such as
Physics-informed Neural Networks (PINN) (Karniadakis et al., 
2021) and Reinforcement Learning (RL) (Yu, Park, Bayen, Moura, 
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& Krstic, 2021) have been applied to develop efficient learning-
based models to solve PDEs and to accelerate the computation 
speed. But they suffer from the generalization issues for change 
of model parameters and initial conditions. Neural operators 
(NO) have been proposed to learn the operator mappings of 
functionals (Lu, Jin, Pang, Zhang, & Karniadakis, 2021) and then 
were applied to obtain stability-guaranteed backstepping con-
trollers (Bhan, Shi, & Krstic, 2023a). In this paper, we will study 
operator learning for stabilization of Markov-jumping hyper-
bolic PDEs, and the robustness of NO-controller to stochastic 
parameters.

We consider hyperbolic PDE systems with stochastic param-
eters that are governed by a Markov chain. Stability analysis 
and control problem of Markov-jumping hyperbolic PDEs have 
been widely investigated (Amin, Hante, & Bayen, 2011; Bolzern, 
Colaneri, & De Nicolao, 2006; Prieur, Girard, & Witrant, 2014; 
Wang, Wu, & Li, 2012; Zhang & Prieur, 2017). The parameters 
uncertainty is initially represented by switching signals that are 
defined as a piecewise constant function and right-continuous. 
The author dealt with the stochastic delays and then converted 
the delayed system into a PDE-ODE system and designed the 
controller to robustly compensate for the stochastic delay using 
the backstepping method (Kong & Bresch-Pietri, 2022). For appli-
cation in traffic flow control, Zhang and Prieur (2017) designed 
a boundary feedback law to stochastically exponentially stabilize 
the traffic flow whose dynamics are governed by conservation 
laws. Our previous work investigated the mean-square exponen-
tial stability of the mixed-autonomy traffic system with Markov-
jumping parameters, and the controller was designed by the 
data mining, AI training, and similar technologies.
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backstepping method (Zhang, Yu, Auriol, & Pereira, 2024). How-
ever, both the Lyapunov design and the backstepping method 
for PDEs with parameter uncertainties suffer the high compu-
tational cost problem as solving LMIs and backstepping kernels 
is time-consuming. Therefore, it is relevant to adopt machine 
learning tools to accelerate the computations for controllers that 
are robust to the parameter uncertainties.

Backstepping control for PDEs was first proposed in Krstic 
and Smyshlyaev (2008) with full-stated feedback control laws 
and output-feedback control laws. Vazquez, Krstic, and Coron 
(2011) proposed a boundary controller for a 2 × 2 hyperbolic 
system and the well-posedness of the kernel equations used for 
backstepping transformation was proved. Stabilization of higher-
order hyperbolic PDE systems, such as the n + 1 system and the 
n+m system, was solved in Di Meglio, Vazquez, and Krstic (2013) 
and Hu, Di Meglio, Vazquez, and Krstic (2016). The reader is re-
ferred to Vazquez, Auriol, Bribiesca-Argomedo, and Krstic (2026) 
for a survey on backstepping. Recently, the mean-square expo-
nential stabilization of coupled hyperbolic systems with random 
parameters was addressed in Auriol, Pereira, and Kulcsar (2023). 
More precisely, it was shown through a Lyapunov analysis, that 
a nominal backstepping controller was robust to random system 
parameter perturbations, provided the nominal parameters are 
sufficiently close to the stochastic ones on average.

With applications in traffic congestion problem, Yu et al. first 
applied the backstepping control method for the Aw–Rascle–
Zhang (ARZ) traffic model of the hyperbolic PDE type (Aw & 
Rascle, 2000; Zhang, 2002) and then extended the result to two-
class traffic, two-lane traffic, and cascaded traffic control (Yu & 
Krstic, 2022). However, the aforementioned backstepping design 
for hyperbolic PDEs needs to take a backstepping transformation 
and solve kernel equations(another PDE) that are induced by the 
backstepping transformation. Solving kernel equations is time-
consuming and requires an intensive depth of expertise in the 
PDE field. Although an explicit solution can be obtained using 
the power series (Vazquez, Chen, Qiao, & Krstic, 2023; Vazquez 
& Krstic, 2014), it needs to define appropriate power series and 
prove their convergence for the exact kernels. It may cause higher 
computational burden.

Recently, an increasing number of learning-based methods are 
applied to solve PDEs and control problems. PINN is proposed 
for learning the dynamics of PDEs and solving the forward and 
inverse problems of nonlinear PDEs (Karniadakis et al., 2021). But 
PINNs need retraining when initial conditions change, which also 
brings the problem of increased training time and complexity of 
training settings. It only works in a specific set of parameters. 
While RL lacks a theoretical guarantee of exponential stabil-
ity. The adaptability of PINN and RL can be poor for control of 
PDEs under different conditions, in particular, the problem under 
stochastic system parameters considered in this paper.

Compared with PINN and RL, NO exhibits the ability to learn 
operator mapping of functionals, which makes it quite efficient 
to solve the boundary control problem of PDEs (Lu et al., 2021). 
Especially in approximating the backstepping kernels, the expo-
nential stability of the closed loop is guaranteed through the the-
oretical derivation. Bhan et al. (2023a) and Bhan, Shi, and Krstic 
(2023b) adopted NO to accelerate computation speed for obtain-
ing control gains and control laws. For hyperbolic PDEs, Wang, Di-
agne, and Krstic (2025) adopted neural operators to approximate 
the backstepping kernels and provided the stability of the 2 × 2 
hyperbolic PDEs under neural operators. All the previous results 
of NO above focused on adopting NO for control of the deter-
ministic PDEs. The stability results of Markov-jumping hyperbolic 
PDEs under NO have not been explored. In this paper, we in-
vestigated the robust stabilization of NO for the Markov-jumping 
hyperbolic PDEs. It was adopted to approximate the backstepping 
2

kernels and then the stability of the Markov-jumping hyperbolic 
PDEs with NO-approximated kernels was analyzed.

The main contributions of this paper are twofold. First, we 
propose a NO-approximated controller that guarantees robust 
stabilization for hyperbolic PDEs with Markov-jumping param-
eters. To the best of our knowledge, this is the first theoretical 
result establishing the use of operator learning for the robust 
control of linear Markov-jumping hyperbolic PDEs. Different with 
the exponential stability result in Amin et al. (2011) was obtained 
through the condition that the spectral radius of boundary cou-
pling matrices should satisfy specific conditions for all switch 
modes, this paper does not add constrains on the boundary cou-
pling coefficients thus we get the mean-square exponential sta-
bility of the PDE system. Second, we demonstrate the applicability 
of our approach through a traffic congestion control problem, ad-
dressing freeway regulation under stochastic upstream demands. 
The use of neural operators not only improves the computational 
efficiency of solving PDEs but also ensures both system stability 
and solution accuracy. Methodologically, the paper extends the 
Lyapunov analysis proposed in Auriol et al. (2023) to encompass 
NO-approximations.

Notation: We denote L2([0, 1],R) the space of real-valued
square-integrable functions defined on [0, 1] with standard L2
norm, i.e., for any f ∈ L2([0, 1],R), we have ∥f ∥L2 =(∫ 1

0 f 2(x)dx
) 1

2
. The supremum norm is ∥·∥∞.∥·∥ denotes the stan-

dard Euclidean norm. E(x) denotes the expectation of a random 
variable x. For a random signal x(t), we denote the conditional 
expectation of x(t) at the instant t with initial condition x(0) at 
instant s ≤ t as E[s,x(0)](x(t)). The set Cn([0, 1]), n ∈ N denotes the 
space of real-valued functions defined on [0, 1] that are n times 
differentiable and whose nth derivative is continuous.

2. Problem statement

2.1. System with Markov-jumping parameter uncertainties

We consider a stochastic 2 × 2 linear hyperbolic system
∂tu(x, t) + λ(t)∂xu(x, t) = σ+(t)v(x, t), (1)

∂tv(x, t) − µ(t)∂xv(x, t) = σ−(t)u(x, t), (2)

with boundary conditions
u(0, t) = ϕ(t)v(0, t), (3)

v(1, t) = ϱ(t)u(1, t) + U(t), (4)

where the spatial and time variables (x, t) belong to {[0, 1]×R+
}. 

The stochastic characteristic speeds λ(t) > 0 and µ(t) > 0 are 
time-varying. The in-domain couplings σ+(t), σ−(t) and bound-
ary couplings ϕ(t), ϱ(t) are also stochastic and time-varying. The 
different parameters are random independent variables. The set 
of the random variables is denoted as S = {λ,µ, σ+, σ−, ϕ, ϱ}. 
Each random element X of the set S is a Markov process with the 
following properties:

(1) X(t) ∈ {Xi, i ∈ {1, . . . , rX }}, rX ∈ N with X ≤ X1 < · · · <

XrX ≤ X̄ .
(2) The transition probabilities PX

ij (t1, t2) describes the proba-
bility to switch from Xi at time t1 to Xj at time t2. The i, j
are also in the finite modes of the Markov process with 
((i, j) ∈ {1, . . . , rX }2 , 0 ≤ t1 ≤ t2). In addition, PX

ij (t1, t2)
satisfies PX

ij : R2
→ [0, 1] with 

∑rX
j=1 P

X
ij (t1, t2) = 1. 

PX
ij  follows the Kolmogorov equation (Hoyland & Rausand, 

2009; Kolmanovsky & Maizenberg, 2001; Ross, 2014)

∂tPX
ij (s, t) = −cXj (t)P

X
ij (s, t) +

rX∑
PX
ik(s, t)τ

X
kj (t)
k=1
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PX
ii (s, s) = 1,  and PX

ij (s, s) = 0 for i ̸= j, (5)

where τij and cXj =
∑rX

k=1 τ X
jk  are non-negative valued 

functions such that for any t , τ X
ii = 0. The functions τ X

ik  are 
bounded by a constant τ ⋆

X .
(3) The realizations of X are right-continuous.

We assume that the lower bounds for the characteristic speed 
λ, µ are positive. For each X ∈ S, we define TX ∈ {X1, . . . , XrX }

as the set of realizations for the variable X . We denote by rX :=

|TX | the number of modes of X ∈ S. Since the parameters 
are independent, the joint mode set is the Cartesian product 
R := {1, . . . , rλ} × {1, . . . , rµ} × {1, . . . , rσ+} × {1, . . . , rσ−} ×

{1, . . . , rφ}× {1, . . . , rϱ}, whose cardinality is r = rλ × rµ × rσ+ ×

rσ− × rϕ × rϱ . Let δ(t) ∈ (R+)2 × R4 be defined by 

δ(t) =
(
λ(t), µ(t), σ+(t), σ−(t), ϕ(t), ϱ(t)

)
. (6)

δ(t) is a set including all Markov-jumping parameters and it is 
also a big Markov process due to the independence of different 
system parameters. The transition probabilities are obtained from 
the those of S. We also define the modes indices of each element 
in S as j ∈ {1, . . . , rX }, X ∈ S, i.e., δ(t) = δj means the elements 
X is mode j at time instant t , X(t) = XjX .

2.2. NO-approximated nominal control law

Let us first consider the following 2 × 2 linear hyperbolic 
system without stochastic uncertainty, called nominal system
∂tunom(x, t) + λ0∂xunom(x, t) = σ+

0 vnom(x, t), (7)

∂tvnom(x, t) − µ0∂xvnom(x, t) = σ−

0 unom(x, t), (8)

with boundary conditions
unom(0, t) = ϕ0vnom(0, t), (9)

vnom(1, t) = ϱ0unom(1, t) + U(t), (10)

where the nominal characteristic speeds λ0 > 0 and µ0 > 0
are constant. In-domain couplings σ+

0 , σ−

0  and boundary cou-
plings ϕ0, ϱ0 are also assumed to be constant. We also define 
the nominal set δ0 = (λ0, µ0, σ

+

0 , σ−

0 , ϕ0, ϱ0) ∈ (R+)2 × R4

including all the nominal parameters. Let U ⊂ (R+)2 × R4

denote a bounded, closed set of admissible nominal parameters 
on which we carry out both analysis and learning as U := {δ0 =

(λ0, µ0, σ
+

0 , σ−

0 , ϕ0, ϱ0) : λ0 ∈ [λ, λ], µ0 ∈ [µ, µ],
⏐⏐σ±

0

⏐⏐ ≤

σ , |ϕ0| ≤ ϕ, |ϱ0| ≤ ϱ} with fixed constants 0 < λ ≤ λ, 0 <

µ ≤ µ and positive bounds σ , φ, ϱ. All regularity and Lipschitz 
constants below depend only on U . It corresponds to the system 
parameters under the nominal mode. The function U(t) is the 
boundary control input that is given as:

U(t) = − ϱ0unom(1, t) +

∫ 1

0
K vu(1, ξ )unom(ξ, t)dξ

+

∫ 1

0
K vv(1, ξ )vnom(ξ, t)dξ . (11)

where the backstepping kernels K vu, K vv
∈ C1 are defined on the 

triangular domain T = {0 ≤ ξ ≤ x ≤ 1}. The kernels can be 
obtained by solving kernel equations in Vazquez et al. (2011). 
Using the control law (11), the closed-loop system (7)–(10) is 
well-posed and exponentially stable in L2 norm (Bastin & Coron, 
2016; Coron, Hu, Olive, & Shang, 2021). We have the following 
theorem. 

Theorem 1 (Vazquez et al., 2011, Theorem 1). Consider the sys-
tem (7)–(10) with initial conditions u0

nom and v0
nom, and control 

law (11), then the equilibrium u ≡ v ≡ 0 is exponentially stable in 

3

the L2 sense, the equilibrium is reached at finite time tf =
1
λ0

+
1

µ0
.

We now introduce an operator that maps (for a given nominal 
set of parameters δ0) the nominal system parameters to the 
corresponding backstepping kernels. This leads to the following 
lemma: 

Lemma 1.  The kernel operator K: U → (C1(T ))4 defined by 
K(δ0)(x, ξ ) =: (K uu, K uv, K vu, K vv) is locally Lipschitz. More pre-
cisely, there exists a constant cU > 0, depending only on the set 
U , such that for all δa and δb ∈ U , we have 

∥K(δa) − K(δb)∥(C1(T ))4 ≤ cU∥δa − δb∥, (12)

where ∥·∥C1(T ) := ∥·∥L∞(T ) + ∥∂x(·)∥L∞(T ) +
∂ξ (·)


L∞(T ).

Proof.  For each fixed δ0, the coupled kernel equations asso-
ciated with (12) admit a unique solution K(δ0) ∈

(
C1(T )

)4
and depend C1-smoothly on the parameters (Qi, Zhang, & Krstic, 
2024; Vazquez et al., 2011; Wang et al., 2025). Moreover, on any 
bounded parameter set U ⊂ (R+)2×R4 there exists MU > 0 such 
that ∥K(δ0)∥(C1)4 ≤ MU , for all δ0 ∈ U (Di Meglio et al., 2013; 
Wang et al., 2025). Denote K ··

a  (resp. K ··

b ) the kernels associated 
with a set of parameters δa (resp. δb). Denote ∆K ··

:= K ··
a −K ··

b . In-
tegrating along characteristic lines yields and taking C1(T )-norms 
gives the following estimate (Vazquez et al., 2011):

∥∆K ··
∥C1(T ) ≤ cU2 ∥δa − δb∥ + cU3

∫ x

ξ

∥∆K ··
∥C1(Ts)ds,

where cU2 , cU3 > 0 and Ts := {(y, z) ∈ T : z ≤ y ≤ s}. The 
Volterra–Grönwall inequality on T  then yields 

∥∆K ··
∥C1(T ) ≤ cU∥δa − δb∥, (13)

for some cU > 0. Applying this to each of the four components, 
we have ∥K(δa) − K(δb)∥(C1(T ))4 ≤ cU∥δa − δb∥. This completes 
the proof of Lemma  1.

Remark 1.  The local Lipschitz continuity of K established above 
implies that, on any bounded parameter set U , K is continuous 
as a map into (C1(T ))4. Consequently, universal approximation 
results for operator-learning architectures (e.g., DeepONet) guar-
antee the existence of a neural operator to approximate the 
mapping.

From Lemma  1, the kernel operator K maps the system param-
eters to the backstepping kernels, such that there exists a neural 
operator approximating the kernel operator K, then we have the 
following lemma: 

Lemma 2.  For all ϵ > 0, there exists a neural operator K̂ such that 
for all (x, ξ ) ∈ T , 

sup
δ0∈U

K(δ0)(x, ξ ) − K̂(δ0)(x, ξ )
 < ϵ. (14)

Proof.  The proof could be easily obtained using the results in 
Lemma  1 and following same steps in Bhan et al. (2023a) and 
Deng, Shin, Lu, Zhang, and Karniadakis (2022).

Remark 2.  The maximum approximation error ϵ is defined as 
the error between the NO-approximated kernels and the exact 
kernels. The error is related to the network size, neural layers and 
neurons in each layer of the designed network. The selection of 
these parameters is empirical. Theoretically, the ϵ can be chosen 
small enough given enough computing resources.
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Using the neural operator K̂, we can easily obtain the NO-
approximated nominal control law

UNO(t) = − ϱ0unom(1, t) +

∫ 1

0
K̂ vu(1, ξ )unom(ξ, t)dξ

+

∫ 1

0
K̂ vv(1, ξ )vnom(ξ, t)dξ . (15)

Now we first state the well-posedness of the closed-loop system 
with Markov-jumping parameters under the NO-approximated 
kernels. We have the following Lemma: 

Lemma 3.  For any initial conditions of the stochastic system 
u0(x), v0(x) ∈ L2([0, 1],R2) and any initial states δ(0) for the 
stochastic parameters, the system (1)–(4) with the NO-approximated 
nominal control law (15) has a unique solution such that for any t, 
E[0,(u0(x),v0(x),δ(0))](∥u(·, t), v(·, t)∥

2
L2 ) < ∞. (16)

Proof.  The proof of the well-posedness of the system under the 
NO-approximated backstepping kernels can be easily obtained 
by extending the results from Auriol et al. (2023), Zhang and 
Prieur (2017) and Zhang et al. (2024). For every event of the 
stochastic process X(t), t ≤ 0 is a right-continuous function 
with a finite number of jumps in a finite time interval. So there 
exists a sequence {tk : k = 0, 1, . . .} such that t0 = 0, 
limt→∞, tk → ∞. Starting from the initial time instant, we can 
fix the random parameter at the first time interval. The control 
law is obtained by (15). We have stated the well-posedness and 
the regularity of the NO-approximated backstepping kernels in 
Lemma  2. The NO-approximated backstepping kernels have the 
same functional form with the nominal kernels. Therefore, the 
initial-value problem of system (1)–(4) under the control law (15) 
has one, and only one solution using the results in Bastin and 
Coron (2016, Theorem A.4) and Coron et al. (2021, Appendix. A) 
as the system in this paper is a particular case of them. Then 
iterating the process for each time interval on the whole time 
domain, we can get the stochastic system has a unique solution 
for any t ≥ 0 that satisfies (16). This completes the proof of 
Lemma  3.

2.3. Main results

In this section, we state the main results of our paper. The 
objective is to prove that the NO-approximated nominal control 
law (15) can still stabilize the stochastic system (1)–(4), providing 
the nominal parameters are sufficiently close to the stochastic 
ones on average and a small approximation error ϵ. In other 
words, we want to show the following robust stabilization result. 

Theorem 2.  There exists a constant φ⋆ > 0 and a small enough 
approximation error ϵ > 0, if for all time t ≥ 0 and X ∈ S, ∑
X∈S

E[0,X(0)]
(⏐⏐X0

− X(t)
⏐⏐) ≤ φ⋆, (17)

the closed-loop system (1)–(4) with the control law (15) is mean-
square exponentially stable, namely, there exist constants κ =

κ(φ⋆) > 0, ς = ς (ϵ) > 0, independent of t, such that 
E[0,(w(x,0),δ(0))](∥w(x, t)∥2

L2 ) ≤ κ(φ⋆)e−ς (ϵ)t
∥w(x, 0)∥2

L2 , (18)

where w(x, t) = (u(x, t), v(x, t)) ∈ (L2([0, 1],R))2.

Remark 3.  Compared to Auriol et al. (2023), the system con-
sidered in this work involves two sources of uncertainty: the 
Markov-jumping parameters and the approximation error intro-
duced by the neural operator. These two uncertainties, denoted 
4

respectively by φ and ϵ, are independent. In the proof of the 
main theorem, explicit bounds are provided for both the Markov-
jumping variation, denoted φ⋆, and the approximation error ϵ. 
Due to the inherent conservatism of the Lyapunov-based anal-
ysis, the bound φ⋆ is mainly of practical relevance. The stated 
bounds are conservative, and the result should be interpreted 
qualitatively, establishing the existence of robustness margins. In 
particular, a smaller value of φ⋆ leads to faster convergence of 
the stochastic system, and the same holds for the approximation 
error: reducing ϵ improves the convergence rate.

3. NO-approximated kernels for stochastic system

In this section, we give the details of the backstepping trans-
formation and derive the target system under NO-approximated 
nominal control law. Following the backstepping method pro-
posed in Vazquez et al. (2011),

α(x, t) = u −

∫ x

0
K uu(x, ξ )u + K uv(x, ξ )v dξ, (19)

β(x, t) = v −

∫ x

0
K vu(x, ξ )u + K vv(x, ξ )v dξ, (20)

where these kernels K uu, K uv
∈ C1 defined on the same trian-

gular domain T  are obtained by solving the associated kernels 
equations in Vazquez et al. (2011). Then we get the following 
stochastic target system,

∂tα(x, t) + λ(t)∂xα(x, t) = f1(δ(t))v(x, t) + f2(δ(t))β(0, t)

+

∫ x

0
f3(δ(t), x, ξ )u(ξ, t) + f4(δ(t), x, ξ )v(ξ, t)dξ, (21)

∂tβ(x, t) − µ(t)∂xβ(x, t) = g1(δ(t))u(x, t) + g2(δ(t))β(0, t)

+

∫ x

0
g3(δ(t), x, ξ )u(ξ, t) + g4(δ(t), x, ξ )v(ξ, t)dξ, (22)

with boundary conditions
α(0, t) = ϕ(t)β(0, t), (23)
β(1, t) = (ϱ(t) − ϱ0)u(1, t)

−

∫ 1

0

(
K vu(1, ξ ) − K̂ vu(1, ξ )

)
u(ξ, t)

+

(
K vv(1, ξ ) − K̂ vv(1, ξ )

)
v(ξ, t)dξ, (24)

where f1 =

(
σ+(t) − σ+

0
λ(t)+µ(t)
λ0+µ0

)
, f2 =

(
µ(t) −

λ(t)ϕ(t)µ0
λ0ϕ0

)
K uv(x, 0), f3 =

(
λ(t)
λ0

σ−

0 − σ−(t)
)
K uv(x, ξ ), f4 = (λ0 − λ(t)) ∂xK uv

(x, ξ )+(µ(t) − µ0) ∂ξK uv(x, ξ )−
(
σ+(t) − σ+

0

)
K uu(x, ξ ), and g1 =

σ−(t) −
λ(t)+µ(t)
λ0+µ0

σ−

0 , g2 =

(
−λ(t)ϕ(t) + µ(t) λ0ϕ0

µ0

)
K vu(x, 0), g3 =

(µ(t)−µ0)K vu
x (x, ξ )− (λ(t)−λ0)K vu

ξ (x, ξ )− (σ−(t)−σ−

0 )K vv(x, ξ ), 
g4 =

(
σ+

0 µ(t)
µ0

− σ+(t)
)
K vu(x, ξ ). The backstepping transforma-

tion (19)–(20) is a Volterra type so that it is boundedly in-
vertible (Yoshida, 1960). Therefore, all the terms that depend 
on (u, v) in the target system could be expressed in terms of 
(α, β) using the inverse backstepping transformation associated 
with (19)–(20). We chose to keep them as functions of (u, v) to 
avoid complex expressions. As it will be seen, these expressions 
are convenient for the robust analysis. Thus, the target system 
is simpler in the sense that it simplifies the robustness analysis 
that will be carried out in the next section. Next, we bound all 
the terms in the target stochastic system. Due to the invertibility 
of the backstepping transformation (19)–(20), the states of the 
stochastic target system and the original states have equivalent 
L2 norms, namely, there exist two constants m > 0 and m >
1 2
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0 such that m1∥w(x, t)∥2
L2 ≤ ∥Ξ (x, t)∥2

L2 ≤ m2∥w(x, t)∥2
L2 , 

where Ξ (x, t) = (α(x, t), β(x, t)) ∈ (L2([0, 1],R))2. We have the 
following lemma: 

Lemma 4.  There exists a constant M0 > 0, such that for any 
realization of X(t) ∈ S, for any (x, ξ ) ∈ T , and i ∈ {1, 2, 3, 4}, 
we have the following bound

|fi(δ(t))| ≤ M0

∑
X∈S

⏐⏐X0
− X(t)

⏐⏐, (25)

|gi(δ(t))| ≤ M0

∑
X∈S

⏐⏐X0
− X(t)

⏐⏐. (26)

Proof.  For the bound of the functions, we have |f1(δ(t))| ≤

max{1,
⏐⏐⏐ σ+

0
λ0+µ0

⏐⏐⏐}∑X∈S

⏐⏐X0
− X(t)

⏐⏐. For the function f2(δ(t)),

|f2(δ(t))| ≤ max{1, µ0
λ0

,
µ0λ

λ0ϕ0
} supT ∥K uv(x, 0)∥

∑
X∈S

⏐⏐X0
− X(t)

⏐⏐. 
For function f3(δ(t)), we have |f3(δ(t))| ≤ (1 +

⏐⏐⏐σ−

0

⏐⏐⏐
λ0

) supT

∥K uv(x, ξ )∥
∑

X∈S

⏐⏐X0
− X(t)

⏐⏐. Using the same method, for f4(δ(t)),
we get |f4(δ(t))| ≤ max{supT ∥∂xK uv(x, ·)∥, supT

∂ξK uv(·, ξ )
,

supT ∥K uv(·, ·)∥}
∑

X∈S

⏐⏐X0
− X(t)

⏐⏐. The backstepping kernels K ··

are well-defined and bounded such that their derivatives are also 
bounded and well-defined. For the functions of gi(δ(t)), we can 
use the same method to derive the bound of them. This finishes 
the proof of Lemma  4.

4. Lyapunov analysis for the stochastic system

In this section, we will provide the Lyapunov analysis of the 
system under the NO-approximated control law to show that the 
system is mean-square exponentially stable. The objective is to 
prove Theorem  2. To do that, we first need to define the Lyapunov 
candidate and then conduct the Lyapunov analysis to finish the 
proof.

4.1. Derivation of Lyapunov functional

The previous section has proved that the nominal system 
with nominal controller is exponentially stable. For the stochastic 
target system, we consider the following stochastic Lyapunov 
functional candidate as 

V (Ξ , δ) =

∫ 1

0

e−
ν

λ(t)

λ(t)
α2(x, t) + a

e
ν

µ(t)

µ(t)
β2(x, t)dx. (27)

If the system stays at mode j where δ(t) = δj, the Lyapunov 

candidate can be also written in Vj(t) =
∫ 1
0

e
−

ν
λj

λj
α2(x, t) +

a e
ν
µj

µj
β2(x, t)dx. The Lyapunov candidate is equivalent to the L2

norm of state Ξ (x, t), there exist two constants m3 > 0 and 
m4 > 0 that m3∥Ξ∥

2
L2 ≤ V (Ξ , δ(t)) ≤ m4∥Ξ∥

2
L2 . And then we 

consider the infinitesimal generator L of the Lyapunov candidate 
V  defined in (27) as (Ross, 2014)

LV (Ξ , δ) = lim sup
∆t→0+

1
∆t

(E(V (Ξ (t + ∆t), δ(t + ∆t)))

− V (Ξ (t), δ(t))). (28)

Also, for the infinitesimal generator of the Lyapunov candidate at 
each Makrov mode j ∈ {1, . . . , r} where δ(t) = δj, we denote 

LjV (Ξ ) =
dV
dΞ

(Ξ , δj)hj(Ξ ) +

∑(
Vℓ(Ξ ) − Vj(Ξ )

)
τjℓ(t), (29)
ℓ∈R

5

where ℓ ∈ {1, . . . , r} and the operator hj is defined as 

hj(Ξ ) =

⎡⎢⎢⎢⎣
−λj∂xα(x, t) + f1(δj)v(x, t) + f2(δj)β(0, t)

+
∫ x
0 f3(δj, x, ξ )u(ξ, t) + f4(δj, x, ξ )v(ξ, t)dξ

µj∂xβ(x, t) + g1(δj)u(x, t) + g2(δj)β(0, t)
+
∫ x
0 g3(δj, x, ξ )u(ξ, t) + g4(δj, x, ξ )v(ξ, t)dξ

⎤⎥⎥⎥⎦ . (30)

 To prove Theorem  2, we first give the bound of the probability of 
the infinitesimal generator of the Lyapunov candidate. We have 
the following lemma: 

Lemma 5.  There exists ϵ0 > 0 such that for all approximation error 
of NO 0 < ϵ < ϵ0, there exists η > 0, M2 > 0, M3 > 0 and m5 > 0
such that the Lyapunov functional V (t) satisfies

r∑
j=1

Pij(0, t)LjV (t) ≤ −V (t)
(
η − M3Z(t)

−
(
M2 + M3rτ ⋆

)∑
X∈S

E
(⏐⏐X0

− X(t)
⏐⏐))

+ (m5E(
⏐⏐X0

− X(t)
⏐⏐) − e−

ν

λ̄ )α2(1, t), (31)

where the function Z(t) is defined as:

Z(t) =

r∑
ℓ=1

∑
X∈S

⏐⏐X0
− Xℓ

⏐⏐ (∂tPiℓ(0, t) + cℓPiℓ(0, t)) .

Proof.  To prove this lemma, we first compute the term dVdΞ (Ξ , δj)
hj(Ξ ) of the infinitesimal generator of the Lyapunov candidate. 
Supposing that the system stays at mode j at some time t , such 
that δ(t) = δj, we have the following result

dV
dΞ

(Ξ , δj)hj(Ξ ) = −νVj(t) +

∫ 1

0

2
λj

e
−

ν
λj

x
α(x, t)(

f1(δj)v(x, t) + f2(δj)β(0, t) +

∫ x

0
f3(δj, x, ξ )u(ξ, t)

+ f4(δj, x, ξ )v(ξ, t)dξ
)
dx +

∫ 1

0

2a
µj

e
ν
µj

x
β(x, t)(

g1(δj)u(x, t) + g2(δj)β(0, t)

+

∫ x

0
g3(δj, x, ξ )u(ξ, t) + g4(δj, x, ξ )v(ξ, t)dξ

)
dx

+ (ϕ2
j − a)β2(0, t) − e

−
ν
λj α2(1, t)

+ ae
ν
µj

(
(ϱj − ϱ0)α(1, t)

+ (ϱj − ϱ0)
∫ 1

0
K uu(1, ξ )u(ξ, t) + K uv(1, ξ )v(ξ, t)dξ

−

∫ 1

0
(K vu(1, ξ ) − K̂ vu(1, ξ ))u(ξ, t)

+ (K vv(1, ξ ) − K̂ vv(1, ξ ))v(ξ, t)dξ
)2

. (32)

Then we use Young’s inequality and the bound of functions in 
Lemma  4, for the term 

∫ 1
0

2
λj
e
−

ν
λj

x
α(x, t) f1(δj)v(x, t)dx, we have∫ 1

0

⏐⏐⏐⏐ 2λj
e
−

ν
λj

x
α(x, t)f1(δj)v(x, t)

⏐⏐⏐⏐dx
≤

1
λm3

(
M0

∑
X∈S

⏐⏐X0
− Xj

⏐⏐)(1 +
1
m1

)
V (t). (33)
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We denote ci arbitrary positive constants in the next. For the 
second term, using the same method, we get∫ 1

0

⏐⏐⏐⏐ 2λj
e
−

ν
λj

x
α(x, t)f2(δj)β(0, t)

⏐⏐⏐⏐dx
≤

1
λm3c1

(
M0

∑
X∈S

⏐⏐X0
− Xj

⏐⏐) V (t)

+
c1
λ

(
M0

∑
X∈S

⏐⏐X0
− Xj

⏐⏐)β2(0, t). (34)

For the third term f3(δj), we have∫ 1

0

⏐⏐⏐⏐ 2λj
e
−

ν
λj

x
α(x, t)

∫ x

0
f3(δj, x, ξ )u(ξ, t)dξ

⏐⏐⏐⏐dx
≤

1
λm3

(
M0

∑
X∈S

⏐⏐X0
− Xj

⏐⏐)(1 +
1
m1

)
V (t). (35)

Also, the fourth term f4(δj) can be bounded by∫ 1

0

⏐⏐⏐⏐ 2λj
e
−

ν
λj

x
α(x, t)

∫ x

0
f4(δj, x, ξ )v(ξ, t)dξ

⏐⏐⏐⏐dx
≤

1
λm3

(
M0

∑
X∈S

⏐⏐X0
− Xj

⏐⏐)(1 +
1
m1

)
V (t). (36)

Next, we will give the bound of the functions g1(δj) to g4(δj). 
Using Young’s inequality and the results in Lemma  4 again, we 
get the results for the four functions. For the first term of g1(δj), ∫ 1
0 |

2a
µj
e

ν
µj

x
β(x, t)g1(δj)u(x, t)|dx ≤

ad1
µm3

(M0
∑

X∈S |X0
− Xj|)(1 +

1
m1

)V (t), where d1 is the bound of the term e
ν
µj

x
. For g2(δj), ∫ 1

0 |
2a
µj
e

ν
µj

x
β(x, t)g2(δj)β(0, t)|dx ≤

ad1
m3µc2

(M0
∑

X∈S |X0
− Xj|)(1 +

1
m1

)V (t) +
ad1c2

µ
(M0

∑
X∈S |X0

− Xj|)β2(0, t). For g3(δj), 
∫ 1
0 |

2a
µj
e

ν
µj

x

β(x, t)
∫ x
0 g3(δj, x, ξ )u(ξ, t)dξ |dx ≤

ad1
µm3

(M0
∑

X∈S |X0
− Xj|)(1 +

1
m1

)V (t). For g4(δj), 
∫ 1
0 |

2a
µj
e

ν
µj

x
β(x, t)

∫ x
0 g4(δj, x, ξ )v(ξ, t)dξ |dx ≤

ad1
µm3

(M0
∑

X∈S

⏐⏐X0
− Xj

⏐⏐)(1 +
1
m1

)V (t).

Denoting the last term of (32) as A = ae
ν
µj
(
(ϱj −ϱ0)α(1, t)+

(ϱj − ϱ0)
∫ 1
0 K uu(1, ξ )u(ξ, t)+ K uv(1, ξ ) v(ξ, t)dξ−

∫ 1
0 (K

vu(1, ξ )−

K̂ vu(1, ξ ))u(ξ, t) + (K vv(1, ξ ) − K̂ vv(1, ξ ))v(ξ, t)dξ
) 2

, using the 
basic inequality (a + b)2 ≤ 2(a2 + b2), and then apply Young’s 
inequality, thus A ≤ 2ae

ν
µj [((ρj−ρ0)α(1, t)+(ρj−ρ0)

∫ 1
0 K uu(1, ξ )

u(ξ, t)+ K uv(1, ξ )v(ξ, t)dξ )2 + (
∫ 1
0 (K

vu(1, ξ )− K̂ vu(1, ξ ))u(ξ, t)+
(K vv(1, ξ ) − K̂ vv(1, ξ ))v(ξ, t)dξ )2]. Expending the first term of A
and applying Young’s inequality and Cauchy–Schwarz inequality, 
and then applying the inequality (a + b)2 ≤ 2(a2 + b2) and 
maximum approximation error ϵ to the second term, we get

A ≤ 2ae
ν
µj ((1 + c3)(ρj − ρ0)2α2(1, t) +

2(1 + c3)(ρj − ρ0)2

m1m3c3
× max{ sup

x∈[0,1]

K uu(1, x)
2, sup

x∈[0,1]

K uv(1, x)
2}V (t)

+
2ϵ2

m1m3
V (t)).

Therefore, we have the following result,
dV
dΞ

(Ξ , δj)hj(Ξ ) ≤ −νVj(t) + c4ϵ2V (t)

+

(
2ae

ν
µj (1 + c )ϱ̄(ϱ − ϱ ) − e

−
ν
λj
)

α2(1, t) (37)
3 j 0

6

+ M2

∑
X∈S

⏐⏐X0
− Xj

⏐⏐V (t) + (c5 + ϕ2
j − a)β2(0, t),

where M2 =
3M0(m1+1)

λm1m3
+

M0
λm3c1

+
3M0ad1(m1+1)

µm1m3
+

M0ad1(m1+1)
µm1m3c2

+

4ae
ν
µj ϱ̄(1+c3)
m1m3c3

× max{supx∈[0,1] ∥K uu(1, x)∥2, supx∈[0,1] ∥K uv(1, x)∥2
},

c4 =
4ae

ν
µj

m1m3
, c5 = (M0c1

λ
+

M0ad1c2
µ

)
∑

X∈S

⏐⏐X − X
⏐⏐. There exists a 

η denoting the minimal decay rate of all possible modes for the 
Lyapunov functionals such that −νVj(t) ≤ −ηV (t). Choosing the 
designed parameters c5 and a, such that c5 + ϕ2

j − a < 0 always 
holds. Then we get the following result
dV
dΞ

(Ξ , δj)hj(Ξ ) ≤ −η̄V (t) + M2

∑
X∈S

⏐⏐X0
− Xj

⏐⏐V (t)

+

(
2ae

ν
µj (1 + c3)ϱ̄(ϱj − ϱ0) − e

−
ν
λj
)

α2(1, t), (38)

where η̄ = η − c4ϵ2. The approximation error ϵ is small enough 
such that η̄ > 0. For the second term of the infinitesimal 
generator, applying the mean value theorem to the functions 
λ →

e−
ν
λ
x

λ
, µ →

e
ν
µ x

µ
, we have 

∑
ℓ∈R

(
Vℓ(Ξ ) − Vj(Ξ )

)
τjℓ(t) ≤

M3
∑r

ℓ=1
∑

X∈S τjℓ
⏐⏐Xj − Xℓ

⏐⏐V (t), where M3 is defined by M3 =

1
m3λ2

(
ν
λ

+ 1
)

+
1

m3µ2

(
ν
µ

+ 1
)
e

ν
µ . So we get the bound of the 

infinitesimal generator as

LjV (t) ≤ −η̄V (t) + M2

∑
X∈S

⏐⏐X0
− Xj

⏐⏐V (t)

+

(
2ae

ν
µj (1 + c3)ϱ̄(ϱj − ϱ0) − e

−
ν
λj
)

α2(1, t)

+ M3

r∑
ℓ=1

∑
X∈S

τjℓ
⏐⏐Xj − Xℓ

⏐⏐V (t). (39)

Next, we will compute the expectation of the infinitesimal gen-
erator, defined by L̄ =

∑r
j=1 Pij(0, t)LjV (t). Using the triangular 

inequality and the Kolmogorov equation, we have

L̄ =

r∑
j=1

Pij(0, t)LjV (t)

≤ −

(
η̄ − (M2 + M3rτ ⋆)

∑
X∈S

E(
⏐⏐Xj − X0

⏐⏐)) V (t)

+ M3

r∑
ℓ=1

∑
X∈S

⏐⏐X0
− Xℓ

⏐⏐(∂tPij(0, t) + cjPij(0, t))V (t)

+

(
m5E(

⏐⏐X0
− Xj

⏐⏐) − e
−

ν
λj
)

α2(1, t), (40)

where m5 = 2ae
ν
µ (1 + c3)ϱ̄. Let Z(t) =

∑r
ℓ=1

∑
X∈S

⏐⏐X0
− Xℓ

⏐⏐
(∂tPij(0, t) + cjPij(0, t)), we get 

r∑
j=1

Pij(0, t)LjV (t) ≤ −V (t)
(
η̄ − M3Z(t)

− (M2 + M3rτ ⋆)
∑
X∈S

E
(⏐⏐X0

− X(t)
⏐⏐))

+ (m5E(
⏐⏐X0

− X(t)
⏐⏐) − e−

ν

λ̄ )α2(1, t). (41)

 This finishes the proof of Lemma  5.

4.2. Mean-square exponential stability

Previous sections give the bound and expectation of the in-
finitesimal generator, we will prove the mean-square exponential 
stability of the stochastic system under the NO-approximated 
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kernels in this section. In this section, we aim to prove Theorem 
2.

Firstly, let us denote ω(t) = η̄ − M3Z(t) − (M2 + M3rτ ⋆)∑
X∈S E

(⏐⏐X0
− X(t)

⏐⏐) and define another functional H(t) =

e
∫ t
0 ω(y)dyV (t). Using Lemma  5, we could always find a φ⋆ smaller 

than e
−

ν
λ̄

m5
, we get the following extended inequality 

r∑
j=1

Pij(0, t)LjV (t) ≤ −V (t)ω(t), (42)

and then we take expectation of the inequality, we find that 
E
(∑r

j=1 Pij(0, t)LjV (t)
)

≤ −E(V (t)ω(t)), and then we get that 
E(LV (t)) ≤ −E(V (t)ω(t)). So we get E(LH(t)) ≤ 0. Then we apply 
the Dynkin’s formula (Dynkin, 2012), 

E(H(t)) − H(0) = E
(∫ t

0
LH(y)dy

)
≤ 0. (43)

For E(H(t)), 

E(H(t)) ≥ E
(
V (t)e−M3φ⋆

+
∫ t
0 (η̄−(M2+2M3rτ⋆)φ⋆)dy

)
, (44)

where φ⋆
≥

η̄

2(M2+2M3rτ⋆) , so the following inequality is obtained 

E(H(t)) ≥ E
(
V (t)e−M3φ⋆

+
η̄
2 t
)

. (45)

We already know that E(H(t)) ≤ H(0), thus we have 
E(V (t)) ≤ eM3φ⋆

e−ζ tV (0), (46)

where ζ =
η̄

2 . This finishes the proof of the mean-square expo-
nential stability of the stochastic system, namely, Theorem  2 is 
proved because V (t) has the same equivalent norm with w(x, t). 

Remark 4.  The approximation error ϵ and the Markov-jumping 
uncertainty (bounded by φ⋆) originate from different mecha-
nisms: the former arises in the boundary controller due to neural 
operator approximation, while the latter stems from stochastic 
mode transitions governed by the Kolmogorov equation. Conse-
quently, their modeling can be decoupled. However, both uncer-
tainties jointly affect the Lyapunov convergence rate, requiring 
simultaneous smallness for stability. In particular, larger stochas-
tic variations (larger φ⋆) necessitate a smaller ϵ to preserve the 
decay rate, indicating an implicit trade-off between the two. 
The effective convergence rate η̄ = η − c4ϵ2 is a positive 
constant determined a priori by the system parameters and ap-
proximation accuracy. It does not depend on the current state 
and remains constant throughout the system evolution. In the 
proposed proof, we first tune ϵ to ensure that η̄ > 0, and only 
then bound the stochastic variations to guarantee mean-square 
stability. Consequently, the maximal admissible bound on the 
stochastic variations implicitly depends on ϵ. Once ϵ is chosen, 
we obtain a quadratic dependency between ϵ and φ⋆ by φ⋆

≥
η̄

2(M2+2M3rτ⋆) . Alternatively, one could adopt a different strategy by 
first fixing the maximal bound and then adjusting ϵ accordingly.

5. Application to traffic congestion problem

5.1. Traffic flow model

In this section, we provide the simulation results of the
stochastic system with the NO-approximated kernels. Consider-
ing the following linearized ARZ system

∂t q̃(x, t) + v⋆∂xq̃(x, t) −
q⋆ (γ p⋆

− v⋆)
∂xṽ(x, t)
v⋆

7

=
q⋆ (v⋆

− γ p⋆)

ιv⋆2 ṽ(x, t) −
γ p⋆

ιv⋆
q̃(x, t), (47)

∂t ṽ(x, t) −
(
γ p⋆

− v⋆
)
∂xṽ(x, t) =

γ p⋆
− v⋆

ιv⋆
ṽ(x, t)

−
γ p⋆

ιq⋆
q̃(x, t), (48)

with boundary conditions 

q̃(0, t) = 0, ṽ(L, t) =
q̃(L, t)

ρ⋆
+ U(t), (49)

where q(x, t) is the traffic flow, v(x, t) denotes the traffic speed, 
defined in the spatial and time domain (x, t) ∈ [0, L] × [0, +∞). 
The equilibrium state of the system as (q⋆, v⋆), and the small 
deviations from the equilibrium points are defined as q̃(x, t) =

q(x, t) − q⋆, ṽ(x, t) = v(x, t) − v⋆. The traffic density is defined 
by ρ(x, t) =

q(x,t)
v(x,t) . vf  is the free-flow speed. The reaction time 

ι denotes how long it takes for drivers’ behavior to adapt to 
equilibrium speed. The traffic pressure is defined by p =

vf
ρ

γ
m
( q
v
)γ . 

γ  denotes the drivers’ property which reflects their change of 
driving behavior to the increase of density. Then we take the 
coordinate transformation to write the system in Riemann coor-
dinates, w̄ = exp

( x
ιv⋆

) (
q̃ − q⋆

(
1
v⋆ −

1
γ p⋆

))
ṽ, v̄ =

(
q⋆

γ p⋆

)
ṽ. Then 

the control input U(t), implemented by varying speed limit at 
the outlet of the road section, is given as UARZ(t) = rṽ(L, t) +

r
∫ L
0 K vv(L − ξ )ṽ(ξ, t)dξ − q̃(L, t) − ϱ0

∫ L
0 K vu(L, ξ )e

ξ
ιv⋆ ṽ(ξ, t)dξ +

ϕ0
∫ L
0 K vu(L, ξ )e

ξ
ιv⋆ q̃(ξ, t)dξ , where r = q⋆( 1

v⋆ −
1

γ p⋆ ). The traffic 
density and speed would converge to the equilibrium density 
ρ⋆ and speed v⋆ with this control law at finite time. The ARZ 
system then transformed into boundary control model which 
aligns with (7)–(10) and the coefficients are λ0 = v⋆, µ0 =

γ p⋆
− v⋆, σ+

0 = 0, σ−

0 = −
1
ι
e−

x
ιv⋆ , ϕ0 =

v⋆
−γ p⋆

v⋆ , ϱ0 = e−
L

ιv⋆ . 
The ARZ traffic system will be affected by the stochastic demand 
from upstream traffic flow. We consider the equilibrium density 
ρ⋆(t) is stochastic and it follows the Markov process described 
in (5). Then the system parameters are all become stochastic 
due to the stochastic equilibrium density. Therefore, we can treat 
(λ(t), µ(t), σ+(t), σ−(t), ϕ(t), ϱ(t)) as a whole Markov process.

5.2. Simulation configuration

We run the simulation on a L = 500 m long road section 
and the simulation time is T = 200 s. The free-flow speed is 
vf = 144 km/h, and the maximum density ρm = 160 veh/km, the 
nominal equilibrium states are chosen as ρ⋆

0 = 120 veh/km, v⋆
=

36 km/h. The reaction time ι = 60 s, and γ = 1. We use sinu-
soidal inputs to denote stop-and-go traffic congestion on the road 
as ρ(x, 0) = ρ⋆

+ 0.1 sin
( 3πx

L

)
ρ⋆, v(x, 0) = v⋆

− 0.1 sin
( 3πx

L

)
v⋆. 

Considering the equilibrium density of the system as stochastic, 
we set five different settings of ρ⋆ as (ρ⋆

1 = 90, ρ⋆
2 = 118, ρ⋆

3 =

120, ρ⋆
4 = 122, ρ⋆

5 = 150). The initial probabilities are set as 
(0.02, 0.32, 0.32, 0.32, 0.02), the transition rates τij are defined 
as 

τij(t) =

⎧⎪⎪⎨⎪⎪⎩
0,  if i = j
20,  if i ∈ {1, 5}
10,  if i ∈ {2, 3, 4}, j ∈ {1, 5}
10 + 20 cos (0.01(i + 5j)t)2 , others

(50)

Using the above settings, we numerically solve the Kolmogorov 
forward equation and get the results of the probability of each 
mode in the whole time period. The probability evolution is 
shown in Fig.  1. We adopted the DeepONet framework (Lu et al., 
2021) to train the neural operators in this paper. The DeepONet 
framework consists of brunch net and trunk net which can learn 
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(a) Probability.

  
(b) States.

 

Fig. 1. The probability evolution and states reached in simulation time.
 
(a) Traffic density.

  
(b) Traffic speed.

 

Fig. 2. The open-loop density and speed evolution. 
the different components of backstepping kernels. The input of 
the brunch net are the parameters of the ARZ system in the 
nominal mode, that is, λ0, µ0, σ+

0 , σ−

0 , ϕ0, and ϱ0. The input of 
the truck net is chosen as the triangular domain grid.

To generate training dataset, we randomly sample the nominal 
equilibrium density ρ⋆ in the interval (90 veh/km, 130 veh/km) 
and calculate the corresponding nominal parameters related to 
the equilibrium density. And then using numerical method to 
solve backstepping kernel equations. Finally, we obtain the in-
put parameters λ0, µ0, σ

+

0 , σ−

0 , ϕ0, ϱ0 and the exact backstepping 
kernels K vu(x, ξ ), K vv(x, ξ ). The input–output pairs constitute the 
dataset. The dataset is divided into training dataset and testing 
dataset with the ratio of 9:1. All code and results necessary 
for reproducibility are provided openly at https://github.com/
curryzyang/NeuralOperator4RobustStabilization.

5.3. Simulation results

After the trained model is obtained, we test the model per-
formance under the system with Markov-jumping parameters. 
The results of the open-loop density and speed evolution of 
the stochastic system are shown in Fig.  2. The initial condi-
tions and boundary conditions are denoted by a blue line and 
a red line, respectively. The open-loop density and speed of the 
stochastic system all oscillate during the simulation period. The 
results of the closed-loop with NO-approximated backstepping 
kernels are shown in Fig.  3. It shows that the nominal con-
troller with NO-approximated backstepping kernels successfully 
stabilizes the stochastic system. The traffic density and speed 
oscillations are removed after about 120s. We also compare the 
density and speed between the nominal controller and the nomi-
nal controller with NO-approximated backstepping kernels. The 
density and speed error is shown in Fig.  4. The density and 
speed errors are large and also oscillate at the initial stage of 
the simulation, then the error becomes small. The maximum 
density error is 4.04 veh/km while the maximum speed error is 
1.31 km/h.

The kernels obtained by NO and the numerical method lead 
to a different control input of the stochastic system. The control 
input for the ARZ system is obtained by integrating the pro-
duction of kernels and traffic states of the stochastic system. 
The control input of the nominal controller with backstepping 
8

Table 1
The error of backstepping kernels and traffic states.
 Max absolute error Mean absolute error 
 Kw 5.9604 × 10−5 3.0066 × 10−5  
 K v 5.9519 × 10−5 2.2160 × 10−5  
 ρ 4.0456 0.2450  
 v 1.3119 0.0476  

kernels and NO-approximated kernels are shown in Fig.  5(a). 
Under different control inputs, we also compared the state norm 
of the traffic system, including the stochastic system with the 
nominal controller and the stochastic system with a nominal 
controller accompanied by NO-approximated kernels, as shown 
in Fig.  5(b). From the comparison of control input and state norm, 
it is revealed that the nominal controller with NO-approximated 
kernels stabilizes the stochastic traffic system with small errors 
compared with the nominal controller with backstepping kernels. 
The statistical errors of kernels and traffic states are stated in 
Table  1. After training, we take 100 trials to test the computation 
time of different methods. The average computation times for 
the backstepping and neural operator are 5.9899 × 10−2 s and 
1.7107× 10−4 s. It shows that the neural operator is 350× faster 
than the backstepping method.

6. Conclusions

In this paper, we investigated the mean-square exponen-
tial stability of the hyperbolic PDEs with Markov-jumping pa-
rameters under the nominal controller constructed with NO-
approximated backstepping kernels. We use neural operators to 
approximate the nominal backstepping kernel gains. The Markov-
jumping hyperbolic PDE system with the NO-approximated con-
trol law achieves mean-square exponential stability, provided 
the stochastic parameters are close to the nominal parameters. 
The theoretical result is obtained through the Lyapunov analysis 
and it was applied to freeway traffic congestion mitigation. The 
simulation results demonstrate that the neural operator stabilizes 
the stochastic system with a 350× computation speed faster than 
the numerical method. Future work would focus on the observer 
design for the stochastic PDE system and extension to n + m
systems.

https://github.com/curryzyang/NeuralOperator4RobustStabilization
https://github.com/curryzyang/NeuralOperator4RobustStabilization
https://github.com/curryzyang/NeuralOperator4RobustStabilization
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(a) Traffic density.

  
(b) Traffic speed.

 

Fig. 3. The closed-loop density and speed evolution.
 
(a) Traffic density.

  
(b) Traffic speed.

 

Fig. 4. The error of density and speed evolution.
 
(a) Control input.

  
(b) States norm.

 

Fig. 5. The comparison of control input and state norm.
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