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The uncertainty in human driving behaviors leads to stop-and-go traffic congestion on freeway.
The freeway traffic dynamics are governed by the Aw-Rascle-Zhang (ARZ) traffic Partial Differential
Equation (PDE) models with unknown relaxation time. Motivated by the adaptive traffic control
problem, this paper presents a neural operator (NO) based adaptive boundary control design for
the coupled 2 x 2 hyperbolic systems with uncertain spatially varying in-domain coefficients and
boundary parameter. In traditional adaptive control for PDEs, solving backstepping kernel online can be
computationally intensive, as it updates the estimation of coefficients at each time step. To address this
challenge, we use operator learning, i.e. DeepONet, to learn the mapping from system parameters to
the kernels functions. DeepONet, a class of deep neural networks designed for approximating operators,
has shown strong potential for approximating PDE backstepping designs in recent studies. Unlike
previous works that focus on approximating single kernel equation associated with the scalar PDE
system, we extend this framework to approximate PDE kernels for a class of the first-order coupled
2 x 2 hyperbolic kernel equations. Our approach demonstrates that DeepONet is nearly two orders of
magnitude faster than traditional PDE solvers for generating kernel functions, while maintaining a loss
on the order of 1073. In addition, we rigorously establish the system’s stability via Lyapunov analysis
when employing DeepONet-approximated kernels in the adaptive controller. The proposed adaptive
control is compared with reinforcement learning (RL) methods. Our approach guarantees stability and
does not rely on initial values, which is essential for rapidly changing traffic scenarios. This is the
first time this operator learning framework has been applied to the adaptive control of the ARZ traffic
model, significantly enhancing the real-time applicability of this design framework for mitigating traffic

congestion.
© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and
similar technologies.
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1. Introduction

Stop-and-go traffic congestion is a very common phenomenon
in major cities around the world. The traffic congestion on high-
ways leads to many unsafe driving behaviors, as well as increased
fuel emissions, environmental pollution, and increased commut-
ing time (Belletti, Huo, Litrico, & Bayen, 2015; De Palma & Lindsey,
2011). The traffic congestion is characterized by the propagation
of shock waves on road, caused by delayed driver response.
There have been many studies on traffic stabilization using PDE
models, such as the first-order hyperbolic PDE model proposed by
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Ligthill and Whitham and Richards (LWR) (Lighthill & Whitham,
1955; Richards, 1956) to describe traffic density waves on high-
ways. Then Aw and Rascle (2000) and Zhang (2002) proposed
the second-order nonlinear hyperbolic PDE model to describe the
evolution of velocity and density states in traffic flow. The ARZ
model is a 2 x 2 hyperbolic PDE system and widely used for
describing dynamics of the stop-and-go traffic oscillations. In this
paper, we adopt the ARZ model and develop adaptive boundary
control designs for traffic stabilization.

1.1. PDE backstepping for traffic control

The control strategy for freeway traffic congestion is usu-
ally based on static road infrastructure to regulate traffic flow,
such as ramp metering and varying speed limits. Various traffic
boundary control designs have been proposed to smooth traffic
in the works of Bekiaris-Liberis and Delis (2019), Zhang, Prieur,
and Qiao (2019) as well as Karafyllis, Bekiaris-Liberis, and Papa-
georgiou (2018). While Bekiaris-Liberis and Delis utilize Adaptive
Cruise Control vehicles for in-domain actuation as control in-
puts (Bekiaris-Liberis & Delis, 2019), Karafyllis et al. design a

0005-1098/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://doi.org/10.1016/j.automatica.2025.112553
https://www.elsevier.com/locate/automatica
https://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2025.112553&domain=pdf
mailto:kjlv@bit.edu.cn
mailto:jmwang@bit.edu.cn
mailto:yzhang169@connect.hkust-gz.edu.cn
mailto:huanyu@ust.hk
https://doi.org/10.1016/j.automatica.2025.112553

K. Lv, . Wang, Y. Zhang et al.

boundary feedback law to manage inlet demand Karafyllis et al.
(2018). The boundary control strategy using PDE backstepping is
first proposed in Yu and Krstic (2019) to stabilize the linearized
ARZ system, including full state feedback and output feedback.
Recent efforts (Burkhardt, Yu, & Krstic, 2021; Yu, Auriol, & Krstic,
2022; Yu & Krstic, 2018a, 2018b, 2022; Zhang, Yu, Auriol, &
Pereira, 2023) have further developed backstepping controllers
for various traffic scenarios including multi-lane, multi-class and
mixed-autonomy traffic. This paper primarily focuses on adaptive
control of traffic PDE systems with uncertain parameters.

In traffic flow modeling, relaxation time is a critical parameter
representing drivers’ reaction delays to evolving traffic condi-
tions. However, heterogeneity and unpredictability of individual
driver behavior makes it impossible to obtain the relaxation
time in practice. This uncertainty in relaxation time can signif-
icantly impact the stability and performance of traffic systems.
Traditional control methods struggle to handle such uncertain-
ties, making it difficult to ensure system stability and optimal
performance under varying traffic conditions. To address these
challenges, we adopt adaptive control strategies that allow for
real-time adjustment of the controller gains to accommodate
unknown or time-varying system characteristics, ensuring the
desired system performance.

Early developments in adaptive control for PDEs, as in Lo-
gemann and Townley (1997), addressed systems stabilized via
high-gain feedback, under a relative degree one condition. While
these approaches ensured parameter identifiability, they required
control input to be applied throughout the spatial domain. Con-
siderable progress has been achieved in the adaptive stabiliza-
tion of PDEs with uncertain parameters, especially for hyper-
bolic and parabolic systems (Bohm, Demetriou, Reich, & Rosen,
1998; Hong & Bentsman, 1994; Krstic & Smyshlyaev, 2008a;
Smyshlyaev & Krstic, 2007). Adaptive control methods (Belhad-
joudja, Maghenem, Witrant, & Prieur, 2023; Di Meglio, Bresch-
Pietri, & Aarsnes, 2014; Kawan, Mironchenko, & Zamani, 2022)
can be categorized into Lyapunov-based design, identifier-based
design and swapping-based design. After a decade of research,
advancements in adaptive control have begun to be applied to
coupled hyperbolic PDEs (Anfinsen & Aamo, 2019).

Although adaptive control for PDE systems with unknown pa-
rameters has been extensively studied (Anfinsen & Aamo, 2018;
Auriol, 2020; Hu, Di Meglio, Vazquez, & Krstic, 2015; Krstic &
Smyshlyaev, 2008b; Smyshlyaev, Cerpa, & Krstic, 2010; Wang
& Krstic, 2020) and was first applied for the ARZ PDE model
in Yu and Krstic (2018a). The practical implementation of the
adaptive controller for the traffic systems still faces challenge.
This is because the adaptive control process simultaneously re-
quires the estimation of unknown system parameters and PDE
states. After each time step, it is necessary to recalculate the
solution to the PDE corresponding to the gain kernel function
in order to update the estimated system parameter functions.
This places extremely high demands on real-time computation.
The computational resources required for calculation of the gain
function increase significantly with spatial sampling precision
when applying traditional finite difference and finite element
methods. In this paper, we adopt neural operators to accelerate
computation of adaptive PDE backstepping controllers.

1.2. Advances in machine learning for PDE traffic control

With rapid advances in machine learning, data-driven meth-
ods for solving, modeling and control of PDEs have received
widespread attention including physics-informed learning, rein-
forcement learning and operator learning. Physics-Informed Neu-
ral Networks (PINNs) directly incorporates physical constraints
into neural networks training by embedding the physical laws
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of PDEs into the loss function. This enables PINNs to solve PDEs
without large amounts of training data. Mowlavi and Nabi extend
PINNs method to PDE optimal control problems in Mowlavi and
Nabi (2023). Zhao proposed a novel hybrid Traffic state estimation
(TSE) approach called Observer-Informed Deep Learning (OIDL),
which integrates a PDE observer and deep learning paradigm to
estimate spatial-temporal traffic states from boundary sensing
data in Zhao and Yu (2023). However, PINNs need to be retrained
for each new set of boundary and initial conditions, which poses
limitations in adaptive control applications.

Reinforcement learning (RL) has also been increasingly ap-
plied for PDE control problems, particularly in boundary and
feedback control. RL continuously optimizes strategies to achieve
real-time control of complex PDE systems. In the field of traffic
management, researchers have been applying RL to various traffic
issues. Wu et al. used the city mobility traffic micro-simulator
SUMO to design a deep RL framework for hybrid autonomous
traffic in various experimental scenarios (Wu, Kreidieh, Vinitsky,
& Bayen, 2017). Under the same framework, Qu, Yu, Zhou, Lin,
and Wang (2020) proposed a reinforcement learning-based car-
following model for electric, connected, and automated vehicles
to reduce traffic oscillations and improve energy efficiency. Yu,
Park, Bayen, Moura, and Krstic (2021) presented the exploration
using RL for traffic PDE boundary control. However, RL has limited
generalization ability in practical applications. RL may perform
well under the specific initial conditions. However, for initial
conditions outside the training range, there may be performance
degradation or even failure. RL may be sensitive to hyperparam-
eters and exhibit unpredictable behavior, making it difficult to
ensure consistent and stable performance in different scenarios.

Traditional neural networks typically learn mappings between
finite dimensional Euclidean spaces, but with the advancement of
research, this method has been extended to the field of NO (Lu,
Jin, Pang, Zhang, & Karniadakis, 2021). NO-based learning meth-
ods focus on mapping between function spaces and are specifi-
cally designed for solving PDEs and dynamical systems. Compared
with traditional machine learning methods, NO have two unique
advantages. Firstly, theoretically speaking, NO can learn the map-
ping of the entire system parameter set, rather than being limited
to a single system parameter like standard neural networks.
Secondly, from an empirical perspective, research work (Lu et al.,
2021; Shi et al., 2022) has shown that NO have significantly better
accuracy than traditional deep learning methods when simulat-
ing complex functions. Therefore, NO not only solves individual
equation instances, but can also handle the problems of the entire
PDE family.

Recent research has effectively utilized DeepONet for one-
dimensional transport PDEs (Bhan, Shi, & Krstic, 2023), reaction—
diffusion equations and observer designs (Krstic, Bhan, & Shi,
2024), as well as for hyperbolic PDEs with delay (Qi, Zhang, &
Krstic, 2024), parabolic PDEs with delays (Wang, Diagne, & Krstic,
2025b), 2 x 2 hyperbolic PDEs (Wang, Diagne, & Krstic, 2025a),
traffic flow (Zhang, Zhong, & Yu, 2024) and cascaded parabolic
PDEs (Lv, Wang, & Cao, 2024). In contrast to the approximate
backstepping transformations used in Bhan et al. (2023), Krstic
et al. (2024), Lv et al. (2024), Qi et al. (2024), Wang et al. (2025a,
2025b), Zhang et al. (2024), this paper adopts the exact back-
stepping transformation, referred to as a gain-only approach. The
gain-only approach focuses on approximating a 1D gain ker-
nel, simplifying network design, reducing training set size and
time, and easing the derivation of the perturbed target system,
which have been successfully used in gain scheduling that ad-
just controller gains based on current states of nonlinear PDE
system (Lamarque, Bhan, Vazquez, & Krstic, 2024) and several
benchmark unstable PDEs (Vazquez & Krstic, 2024). A recently de-
veloped method based on power series approximations (Vazquez,
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Chen, Qiao, & Krstic, 2023), along with its MATLAB extension (Lin,
Vazquez, & Krstic, 2024), shows promise as a tool for generating
training datasets. The application of NO-approximated gain ker-
nels becomes even more valuable for adaptive control, where the
kernel must be recomputed online at each time step to accom-
modate updated estimates of the plant parameters. This was first
explored for first-order hyperbolic PDE in Lamarque, Bhan, Shi,
and Krstic (2025) and extended to the reaction-diffusion equation
in Bhan, Shi, and Krstic (2025). Different from Bhan et al. (2025),
Lamarque et al. (2025), where the kernel equation involves a
single kernel, in this work, we extend the results of Lamarque
et al. (2025) to the ARZ traffic models which involved the coupled
heterogeneous hyperbolic PDEs. The technical challenges arise
from both the more complex kernel computations and the proof
analysis of the higher-order PDE systems with the approximated
controllers.

Contributions: The main contributions are summarized as
follows:

e We present an NO-based adaptive control method to sta-
bilize the ARZ traffic PDE model with unknown relaxation
time. Additionally, we extend stability schemes for more
general 2 x 2 hyperbolic systems with uncertain spatially
varying in-domain coefficients and boundary parameter.
Compared to the relevant works (Bhan et al., 2025; Lamar-
que et al., 2025), which approximate single kernel, a key
technical challenge is dealing with the approximation of
coupled 2 x 2 Goursat-form PDE kernels in the stabilization
of coupled 2 x 2 hyperbolic PDEs.

e To address the computational challenges associated with
solving gain kernel equations, we integrate DeepONet into
the adaptive control framework. It is shown that the NO is
almost two orders of magnitude faster than the PDE solver
in solving kernel functions, and the loss remains on the
order of 1073, To the best of our knowledge, this is the first
study to integrate DeepONet with adaptive control in traffic
flow systems, demonstrating its potential to improve the
computational efficiency of control schemes in congested
traffic scenarios.

e Through comparative experiments with RL, it has been
proven that our method does not rely on initial values
compared to RL and provides a model-based solution with
guaranteed stability. In addition, we theoretically prove the
system’s stability through Lyapunov analysis when replacing
with the DeepONet approximation kernels in the adaptive
controller.

Organization of paper:The paper is organized as follows. Sec-
tion 2 introduces ARZ traffic PDE model and a nominal adaptive
backstepping control scheme designed for 2 x 2 hyperbolic PDEs.
Section 3 gives a series of properties for the gain kernel and its
time derivative and introduces the approximation of feedback
kernel operators. Section 4 presents the stabilization achieved
through the application of approximate controller gain functions
via DeepONet. Numerical simulations are presented in Section 5.
Section 6 presents the conclusion.

Notation. We present the nomenclature for kernel learning with
exact and approximate operators in Table 1. We define the L2-
norm for x(x) e %[0, 1] as ||x]. = fo |x(x)]2dx. We use || - lloo
for the infinity norm, that is [[xllcc = SUDPyeo,1) IX(X)]. We set

Il = fy 1x()ldx.

2. Nominal adaptive control design
2.1. ARZ PDE traffic model

The ARZ PDE model is used to describe the formation and
dynamics of the traffic oscillations which refer to variations of
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Table 1

Nomenclature for kernel learning with exact and approximate operators.
exact operator K
neural operator K

unknown model parameters
estimated model parameters

(c1,€2,€3,€4,T)

(
exact kernel (I(” Km) = K(c1, €2, C3,C4,T)
exact estimated kernel (K” K"‘) = K(C1, &, €3, €4, T)
approximate estimated kernel (R*, K™) = R(é4, &, &3, &, 1)

traffic density and speed around equilibrium values. It consists of
a set of 2 x 2 hyperbolic PDEs for traffic density and velocity. The
ARZ model of (p(x, t), v(x, t))-system is given by

dp + 0x(pv) = 0,

V _
0 — V(o) + v 0 = V() = T2
, (1)
p(0,t) = 0.0’
u(L, t)=U(t) + v7,

where (x, t) € [0, L] x Ry, p(x, t) represents the traffic density,
v(x, t) represents the traffic speed, and 7 denotes the relaxation
time, which refers to the time required for driver behavior to
adapt to equilibrium. This parameter is used to describe the pro-
cess by which vehicle speed adjusts to match the traffic density.
The variable p(p), defined as the traffic system pressure, is related
to the density by the equation

and ¢y, y € Ry. The equilibrium velocity-density relationship
V(p) is given in Greenshield model:

_ (Y
V(p)—vf<1 (/)m>>’

where vy is the velocity of free flow, pp, is the maximum density
of free flow, and (p*, v*) are the equilibrium points of the system
with v* = V(p*). We consider a constant traffic flux ¢* =
p*v* entering the domain from x = 0 and there is a Varying
Speed Limit(VSL) boundary control at the outlet. U(t) is defined
as variation from steady state velocity. The VSL at outlet shows
v* with U(t) which we will design later. We can apply the change
of coordinates introduced in Yu and Krstic (2018b) to rewrite
it in the Riemann coordinates and then map it to a decoupled
first-order 2 x 2 hyperbolic system.

Orllq +v*05u; =0,
amy — (yp* — v*)ymy = c(X)uy,
u1(0, t) = romy(0, t),
my(L, t) = U(t),

(2)

where

1 X p*V(p*) + v*
cX)=——exp(——) o= —"—"——
T TV v

The relaxation time t describes how fast drivers adapt their
speed to equilibrium speed-density relations. Its value is usu-
ally difficult to measure in practice and is easily affected by
various external factors. Therefore, we propose adaptive control
law. Motivated by the second-order ARZ model, we first pro-
pose NO-based adaptive design for a more general framework of
2 x 2 hyperbolic PDEs with spatially varying coefficients, as the
linearized ARZ model (2) is a special case of such systems.
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2.2. Adaptive control for coupled 2 x 2 hyperbolic PDEs

We consider the first-order coupled 2 x 2 hyperbolic PDE
system with four spatially variable coefficients,

oru(x, t) 4+ Adu(x, t) = ci(x)u(x, t) + co(x)m(x, t),

t
oem(x, t) — woxm(x, t) = c3(x)u(x, t) + ca(x)m(x, t), 3
u(0, t) = rm(0, t), (3)
m(1, t) = U(t),

where t € R, is the time, x € [0, 1] is the space, the states
are given by u, m and the initial conditions are u(x, 0) = ug(x),
m(x, 0) = my(x) where ug, my € L*([0, 1]). The positive transport
speeds A, u € R are known. We assume the spatially vari-
able coefficients c1(x), c2(x), c3(x), c4(x) € C([0, 1]) and boundary
coefficient r € R are unknown.

Note that system (3) is 2 x 2 hyperbolic system with spatially
variable coefficients in domain, which is different from the sys-
tem in Anfinsen and Aamo (2018) with the constant coefficients.
System (3) is a direct extension of the system in Anfinsen and
Aamo (2018), where the difference lies in the designed adaptive
update law.

To ensure the well-posedness of the kernel PDEs, the adap-
tive control estimation requires bounded assumptions. Our basic
assumption is as follows.

Assumption 1. Bounds are known on all uncertain parameters,
that is, there exists some constants ¢;, i = 1---4, and 7 so that

lcillo < Cii=1---4,|r| <T. (4)

We first propose an adaptive control design using passive
identifier design method, which includes the exact estimated
backstepping kernels K", K™.

We consider the identifier

Ocli(x, t) = — AOli(x, t) + C1(x, t)u(x, t)
+ G, Om(x, t) + pes(x, )] ()],
d;m(x, t) =poym(x, t) + C3(x, thu(x, t)
+ Cax, O)m(x, t) + pey(x, )| (1)), (5)
2 2
(0. 1) zru(O, t) + u(0, t)m*(0, t)’
1+ m2(0, t)
m(1, t) =U(t),

where p > 0,
ei(x, t) = u(x, t) — u(x, t), ex(x, t) = m(x, t) — m(x, t), (6)

are errors between u and m and their estimates 1 and m, ¢; and
I are estimates ¢; and r. We define

m(x, )],
for some initial conditions

llg, g € L*([0, 11).

w(x,t) = [u(x,t),

The error signals (6) can straightforwardly be shown to have
dynamics

oreq1(x, t) = — Adke1(x, t) + C1(x, thu(x, t)
+ Gx, Om(x, t) — pey(x, t)]|a ()], (7)

orex(x, t) =uoyex(x, t) + C3(x, thu(x, t)
+ Ca(x, t)m(x, t) — pey(x, )| (1), (8)
F(t)m(0, t)
(0.0 =17 m2(0, t)’ ©)
ex(1,t) =0, (10)
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where

FZT—T, 5,'=Ci—e,', i=1,...,4.

We choose the following update laws

Ce(x, t) = Projg, {)’157Vx€1(x tu(x, t), C1(x, f)}7
Ca(x, t) = Projg, {267 ey(x, t)m (x £), &(x, 1)},
Esi(x, t) = Proje, {yse" ea(x, u(x, t), &(x, t)} (11)
Car(x, t) = Proj, {yae”™ey(x, t)m(x, f) Ca(x. 1)}

F(t) = Proj; {yse1(0, )m(0, t), 7 (1)} ,

where Y, y1, ¥2, ¥3, V4, ¥s > 0 are scalar design gains. Proj
denotes the projection operator

0 |@| > @ and &t > 0,

Proj;{r, &} = { T otherwise.

The projection operator Proj;{z, ®} is designed to constrain the
update of parameter @, ensuring that it does not exceed the
predefined bound @. The adaptive laws (11) have the following
properties for all t > 0 (Krstic, 2009)

— &' Projy{r, &) < —@'r. (12)

Lemma 1 (Properties of passive identifier). Consider the system
(3) and the identifier (5), with an arbitrary initial condition iy =
(-, 0), mg = m(-, 0) such that ||iig]| < oo, ||Mg|| < oo, along with
the update law (11) with an arbitrary Lipschitz initial conditions
satisfying the bounds (4), guarantees the following properties

NG, oo <G, Vi=1,...,4, |F|<r, (13)
lell, lle2ll €L N L2, (14)
leslliz I, lezllller || €L?, (15)
le1(0, )1, lex(1, )1, le2(0, -1, le1(0, -)u(0, -)| €L, (16)
136l 1FI L2, (17)
_tmO.) el?. (18)

1+ m2(0, -)

Proof. The proof can be found in Appendix. ®

Considering the plant (3) with unknown parameters ¢;,i =
1,...,4 and r, we will design a nominal adaptive control law to
achieve global stability.

We consider the following adaptive backstepping transforma-
tion
w(x, t) =u(x, t),

O =mxt)— | K
z(x, t) =m(x, t) /0 (x, &, t)i(E, t)d& (19)

f R™(x, &, Of(E. )dE = T, Arl(x, ©),

0

where the kernels K* and K™ satisfy the following kernel func-

tions
1K (x, &, t) =AKE(X, &, £) + &5(&, DK™(x, £, )

+ (C1(E, ) — Ca(E, DKU(X, £, 1),

UK (x, &, 1) = — pK(x, £, £) + &8, OK'(x, £, 1),
u C3(X t) (20)
K (x,x,t) =
At p
. AR(E) o,
K™(x,0,t) = KY(x, 0, t).

m
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The coupled 2 x 2 Goursat-form PDEs, governed by two gain
kernels, are defined over the triangular domain 77, given by:

T ={x8)|0<&<x=<1}. (21)

The kernel functions IZ”(x, &,t) and I?'"(x, &, t) are computed on-
line by solving the equation of 2 x 2 hyperbolic PDEs whose dy-
namics depend on the unknown parameters ¢(x, t),i=1,...,4,
and 7(t). These parameters are continuously estimated and up-
dated via the adaptive laws (11), so that at each time step, the
kernel functions must be continually recalculated according to
the new ¢;(x, t) and 7(t) estimate.

Using the transformation (19), we get the following target
system

we(X, t) = — Awx(x, t) + Crw(x, t) + Creq(x, t) + Coz(x, t)

+ / wox, £, Ow(E. )8
0

+ / k(x, €, t)z(&, t)dg
0

+ Gex(x, t) + pe(x, 0@ (1),
Z(X, t) =pzy(X, t) + Caz(x, t) — AKY(x, 0, £)r(t)e(0, t)
— AKY(x, 0, £)F(£)z(0, t) + AK“(x, 0, t)e; (0, t)

: (22)
- f Ki(x, &, w(, t)dé
0

_ / "R, £, OT ", 2(E. 0

0
+T [6161 + 6262, 6361 + 6462] (X, f)
+ pTler, e2l(x, )l (I,
w(0, t) =r(t)z(0, t) + r(t)e(0, t) — eq(0, t),
z(1,t) =0,

where the coefficient w and « are chosen to satisfy

w(x, &, t) = &(x, K (X, &, t) + /x/c(x, s, OKY(s, &, t)ds,
&

k(x, &, t) = Cox, OK™(x, €, t) + /Xx(x, s, OK™(s, &, t)ds.
3

From the boundary condition of (3), (19) and boundary condition
of (22), the nominal stabilizing controller is straightforwardly
derived as follows

1 1
U(t):/ 12“(1,s,t)a(g,t)ds+/ K™(1,&, t)m(E, t)de.  (23)
0 0

Next, we present the stability of exact adaptive backstepping
control, which serves as a guide for what we aim to achieve under
the NO-based approximate adaptive backstepping design.

Theorem 1. [Stability of exact adaptive backstepping control]
Consider the plant (3) in feedback with the adaptive control law (23)
along with the update law for ¢1, ¢, C3, C4, T given by (11) and the
passive identifier i1, m given by (5) satisfies the following properties
for all solutions for all time:

T - - 2
lull, imll, Nall, ml, ullo, Imllco, lulloo, Il € L7 ML,
lull, llml, @l ml, ldleo, Imlleo, lillco, Itlloo > 0.

Proof. The proof of this theorem follows a similar approach to
the proof of Theorem 9.1 in Anfinsen and Aamo (2019). =

In summary, the exact adaptive backstepping feedback law
(23) can achieve global stability at the equilibrium point, with
the system states u(x, t), m(x, t) converging pointwise to zero.
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However, this method is computationally intensive because it
requires solving Volterra Eqs. (20) at each time step t. To simplify
the computation, we propose using the NO X : (64, 8y, C3, Ca, T) >
(K", K™) to approximate the exact adaptive backstepping gain
operator X : (Ci,Cp,C3, Ca,T) = (KY,K™). This approach al-
lows for neural network evaluation at each time step instead of
solving the complex equations. In the following section, we will
introduce how to approximate the operator X using DeepONet
and use the resulting approximate control gain functions for
boundary stabilization of plant (3). And we will use the universal
approximation theorem of DeepONet (Deng, Shin, Lu, Zhang, &
Karniadakis, 2022) to derive the stability theorem from control
gain kernel approximations.

3. Neural operator for approximating gain kernels

By proving the continuity and boundedness mentioned above,
it can be further deduced that for a set of continuous coefficients
within a certain supremely bounded norm, there exists a NO with
arbitrary accuracy.

3.1. Properties of the gain kernel functions

Lemma 2. Let ||Gi(-, t)lloo < G, |T| < T, V(x,t) € [0, 1] x R,. Then,
for any fixed t € Ry and for any A, u € Ry, ¢ € C([o, 1]) and
r € Ry, t > 0, the gain kernels K", K™ satisfying the PDE systems
(20), have unique C(7T7) solutions with the property

K'(x, &, )] <K, (24)
K™(x, &, 1)] <K, (25)
IK (%, &, )| <Myl|Erell + MallEaell + MsliEsel

+ Mal|Eaell + M7, (26)
IKP(x, &, Ol <MslIExell + My l1&xll + Ms|| ¢l

+ Mol|scl + Mio|F. (27)
where K > 0, M; > 0,j = 1,..., 10 are constants depending on

the parameter bounds (4).

Proof. Fix time t > 0. The existence of a unique, bounded
solution to kernel Egs. (20) are guaranteed by Coron, Vazquez,
Krstic, and Bastin (2013, Theorem A.1). Furthermore, this result
ensures that the solution satisfies uniform bounds of the form

IKU(x, &, ) <K, [K"(x,&,8)] <K, t>0,

where K is a constant determined by the compactness of the
admissible parameter set ¢y, ..., Cs, I.

Differentiating Eq. (20) with respect to time yields the follow-
ing system in terms of K} and K/™:

WKy — MK = (& — &) K + &K
+ (en - e4t) K + 63[[(”1,
HKE + uKE =6 K + & K",
- . . (28)
K'(x, 0) =— K/ (x, 0) + — K¥(x, 0),
I I
C3¢
A+p

Applying again the result of Coron et al. (2013, Theorem A.1)
to the Egs. (28), one obtains the existence and uniqueness of
a bounded solution (K}, K["), with bounds of the form (26)-
(27). =

Iv<t“(x, X)=—
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DeepONet Structure Adaptive Control

Based on Identifier Design

Input I

Parameter update law

|

Branch Net
39N JunIL
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System

Controller
U = [ R*0.£.00( 0z + [ K7 &0m(E.0dz

Fig. 1. The operator learning framework for adaptive control.

3.2, Approximation of the neural operator

In the following discussion, we will first introduce the univer-
sal approximation theorem of DeepONet. This theorem demon-
strates DeepONet’s ability to approximate operators, enabling us
to use it to learn the backstepping gain kernel mapping of PDEs
and theoretically guarantee the stability of the adaptive control
system.

Theorem 2 (DeepONet universal approximation theorem (Deng
et al, 2022)). Let X C R% and Y  RY be compact sets of vectors
x € Xandy € Y, respectively. Let U : X +— U C R% and
V:Y > V c R% be sets of continuous functions u(x) and m(y),
respectively. Let U be also compact. Assume the operator G : U +— V
is continuous. Then for all ¢ > 0, there exist n*, p* € N such that
for each n > n*,p > p*, there exist 6%, 9@ for neural networks

NG00, gV o) i=1,...,pandx; € X,j = 1,...,n, with
corresponding u, = (u(x1), u(xz), ..., u(x,))", such that
[S(W)(y) — Sn(un)y)l < €
where
p

Sn(un)(y) = Zg”(un; 9N (y: o),

i=1
for all functions u € U and for all values y € Y of S(u).

Fig. 1 presents a schematic diagram of the control circuit,
illustrating the utilization of neural operators to accelerate the
generation process of gain kernel functions in PDE adaptive con-
trol.

As illustrated in Fig. 2, the DeepONet consists of two sub-
networks: a Branch Net and a Trunk Net. The Branch Net takes
a five-channel 2D input and extracts spatial features using two
convolutional layers, each with a kernel size of 5 and a stride of
2. The output is flattened and passed through two fully connected
layers with 512 and 256 neurons, respectively, each followed
by a ReLU activation. The Trunk Net receives spatial coordinate
input and processes it through three fully connected layers with
884, 128 and 256 neurons, also activated by ReLU functions. The
outputs from both networks are then combined via inner product
to produce the approximated kernel function value K.

Theorem 3. [Existence of a neural operator to approximating the
kernels] Fix t > 0. Fix a compact set K C (C([0, 1]))* x R and define
the operator X : K — (C(77))?

K(E1, &, 3, Ca, F)(-, ) 1= (KU (x, €), K™(x, &)
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Fig. 2. The DeepONet structure for operator X.

Then, for all € > 0, there exists a neural operator X : K — (C(71))2
such that for all (x, &) € T4,

|K(C1, Ca, C3, Ca, T)(-, ) — K(C1, o, C3, Ca, T)(-, 8)] < €.

Proof. The continuity of the operator X is derived from Lemma
2. And this result is based on Theorem 2.1 proposed by B. Deng
et al. in their study (Deng et al,, 2022). =

4. Stabilization under DeepONet-approximated gain feedback

We will demonstrate that although the adaptive controller
uses approximate estimated kernel functions, the stability of the
system is still guaranteed. Based on Theorem 1, we present the
system stability proof for the adaptive backstepping controller
using approximate estimation kernels K", K™ in the following
theorem.

Theorem 4 (Stabilization under approximate adaptive backstepping
control). For all ¢q, C2, C3, C4,7 > 0O, Eherg exists a constant €y > 0
such that for all NO approximations K*, K™ of accuracy € € (0, &)
provided by Theorem 3, the plant (3) in feedback with the adaptive
control law

1 1
U(f)Z/ 12”(1,§,f)ﬁ(§,f)d§+/ K™(1,€, (g, g, (29)
0 0

along with the update law for ¢1, ¢, C3, C4 and T given by (11) with
any Lipschitz initial condition ¢;9 = ¢4(-, 0), Co0 = (-, 0), C39 =
C3(+, 0), Cao = C4(+, 0) such that [|Croll < €1, [IC0ll < €2, IC30ll <
C3, ||Ca0ll < C4, and |7(0)| < 1. The passive identifier u, m given by
(5) with any initial condition tig = (-, 0), Mg = m(-, 0) such that
lltig]l < oo, |IMg]l < oo, the following properties hold:

lull, il 12l 13, ulloo, 1Mo, Illoo, 1]l € L N L,
tlloos Mooy itllsos Mlleo > 0.

Moreover, for the equilibrium (u, m, i1, m, ¢4, ¢, €3, €4, 7) = (0, 0, 0,
0, c1, Ca, C3, C4, 1) the following global stability estimate holds

A
S(t) < 2;72925(0)&1"25(0’, t>0, (30)
<1

where
S(e) =llull® + lIm)> + [al® + [1@l> + 1611° + IS0
+ 18012 + 16l + 72,

and ky, ky, 61 and 0, are strictly positive constants.
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Proof. This proof mainly refers to Anfinsen and Aamo (2019,
Chapter 9), and makes necessary supplements to the gain approx-
imation error while reducing repetition.

A. DeepONet-perturbed target system

We consider the following adaptive backstepping transforma-
tion (19)

w(x, t) =u(x, t),

) =mx, t) — [ K'(x &, )i, t)d
2o, ) =it 1) = [ R . e, 0 -

- /xfd"(x, £, M€, t)dE =: T[{l, m(x, t),
0

where K" and K™ are exact solutions to kernel function (20). The
transformation is an invertible backstepping transformation, with
inverse in the same form

i(x, t) =w(x, t),

~ 1) =z(x, iu Jt)d
m(x, t) =z(x t)+/0 w(§, t)d§ (32)

+ fximz(g, t)de = T~ [w, z](x, t)
0

where T~ is an operator similar to T. From Lemma 2, Iv<“, Iv<vm are
continuous, there exist unique continuous inverse kernels L,
defined on T; and there exists a constant L so that |[[*[| < L,
IL™|s < L. We will derive the DeepONet-perturbed target sys-
tem with exact estimated kernels. Because the controller we have
chosen is (29), where the kernels K* and K™ are approximated by
NO. This transformation lead to the following target system

we(X, t) = — Awx(x, t) + Crw(x, t) + Creq(x, t) + Cz(x, t)

+ / ok, £, Dw(E, D
0

+ f (. 20, )dE
0

+ eZez(xvt)+pel(xvt)”w(t)”2’ (33)
ze(x, £) =pze(x, t) + Caz(x, t) — AK"(x, 0, t)r(t)ex(0, t)
— AK"(x, 0, 0)F(t)2(0, t) + AKY(x, 0, t)e;(0, t)

- f xk:'(x, £, w(g, t)de
0

_ / "R, £, OT ", 2(E. 0
0

+T [6161 + 6262, 6361 + 6462] (X, f)
+ pTler, e2l(x, )@ (0], (34)
w(0, t) =r(t)z(0, t) 4+ r(t)ex(0, t) — e4(0, t), (35)

1
21.6) = —f RU(1, £, (e, t)de
0

1
—/ K™, &, )T "[w, z](€, t)dE = I'(t), (36)
0
where

w(x, E,t) = C(x, )K" (x, E.t)+ fx K(x, s, OKY(s, &, t)ds,
3

X
K(x,é,t)=6z(x,t)f<m(x,$,t)+/ k(x, s, K™ (s, £, t)ds.

§
The main difference between the current system (33)-(36) and
the system described in (22) is the perturbation I'(t) in the
boundary conditions (36). This difference is due to the controller
(29) using an approximated estimated kernels K* and K™ instead

Automatica 182 (2025) 112553

of the exact estimated kernels K and K™. The specific derivation
process of (36) is as follows

z(1,t)=ﬁ1(1,r)—A]I%“(l,s,t)a(s,t)dg
- /0 im0
=U<t)—/011?“<1,s,t>a(s,t>ds
- fo "kn(1 . e tde
:folkuu,g,t)a(g,t)dg +/0]12m(1,5,r)m(g,r)d§
- fo]k”u, £, DiE, e — /011?"1(1,5, (e, £
:—lezu(l,g,c)a(g,:)dg - /0112'"(1,s,t)m(s,t)ds.

By using (32), we obtained (36).

In the following part, we introduce the spatial L> boundedness
and regulation of plant and observer states.

We use the following Lyapunov function candidate

V(t) == Vu(t) + aVs(t), (37)
and
1
Va(t) = lw(t)]|? =/ e w?(x, t)dx, (38)
0
1
Vs(t) == ||z(t)||§:/ e 22 (x, t)dx, (39)
0

where a, §, k > 0. We deduce that there exist positive constants
ap, ay > 0 such that

ar(lw(Ol + 20O < V() < ax(llw(O)]] + lz(0)]]).

Before we start the formal calculations of the Lyapunov function,
we present the formulas derived from Lemma 2

K"l < K, 1K™l <K,

IK" oo < €. 1K™ oo < €,

lw(®)]l = (a0,

lz(O)ll < (1 + K)Im(e)] + K1),

() < (14 Dzl + Lijw(o)]l,

|F(0)] < el (lwll + l1zI)),

where

I'=1+1L.

(Y # 0. This leads to

the terms — ue*e2™V(t) in (40) as follows. There exist posi-
a

The key difference is z(1,t) =

. 1 o _
tive constants hq, hy, ..., hg and nonnegative, integrable function
£1,82, - -.,8s such that

Va(t) <h1z%(0, t) — [A8 — ha] Va(t) + hsVs(t)
+ g1(6)Vy(t) + &2(1),

Vs(t) <pe*z’(1,t) — [ — ehaf?(0)] 220, t) + sV,
— [ku — he] Vs + g3(£)Va + g4(t)Vs + gs(t)

1 _
§a—uek621"2V(t) — [ — e nai(0)] 220, £) + hs Vs
1

— [kp — he] Vs 4 g3(£)V4 + g4(£)Vs + gs(t), (40)



K. Lv, . Wang, Y. Zhang et al.

where
gi1(t) =e® ples ()1 1w ()11,
&(t) = (] +4e7°) ller(OI* + (c5 + 4e7°) lex(0)]1?
+ 3xe2(0, t) + 3AF%e3(0, t),
~ 2 N 2
a3(t) =e> HK;’(r)H + 260tk 1<;"(t)H A,
8a(t) =207 (A%[les (0)]1> + A3llex(0)]1%) Il (0)1?

~ 2
+ 26 ‘ 1<{"(t)H A2,

gs(t) =A*K%2e*e2(0, t) + A2K2e*e?(0, t)
+ 26 (AT ler (DI + ATES lea(O + A363 ex ()]
+ A NexOI) +4e (lea(O)1> + lleat)IP).

where A; > 0,i = 1---4, 8 > 1. Thus, we obtain the following
upper bound calculation

v(t) < — [d - aluekezfz] V(t) + gs(t)V(t) + g7 (1), (41)
1

for positive constant d and the nonnegative, integrable functions
gs(t) and g7(t)

g6(t) =max {g(t) + ags(t), ga(t)}, (42)
2722(0, t)? .
it =% + 8b72e,(0, 1) + g (1) + ags ()
2z(0, t)? )

where a, b are positive constants. We introduce the positive con-
stant

Jai(2d—1)
/Z,ue"l_“z ’

1 _
Thus, if we choose € € (0, p) we have d— — ueke?™ > 1/2 > 0.

€p ==

It then follows from Lemma 12 in Anfinsen 1and Aamo (2017) that
Vel nL™,

and hence

lwll, llzll € L N L.

Due to the invertibility of the backstepping transformation

Iall, lIml e L2 N L.

From Lemma 1, |leq|, |lez]| € L N L, it follows that

lull, Im|| € L* N L.

B. Pointwise-in-space boundedness and regulation

The paper (Vazquez, Krstic, & Coron, 2011) proved that the
system (3) is equivalent to the following system through an
invertible backstepping transformation.

VX, t) = —Ayx(x, t) + hy(x)¢ (0, t), (44)

(t(x, t) = /’L{X(X! t)? (45)

¥(0,t) =1z(0, t), (46)
1

¢(1, ) =U(t) —/ (G1(&)u(§) — G2(&)m(§))déE, (47)
0

for some bounded functions hq, G, G, of the unknown parame-
ters. Eq. (44)-(47) can be explicitly be solved for t > A~! + !
to yield

Y =r¢ (1t —p ' —17x)
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+ a7 thm)c (Lt—p™' =2 x—1))dr, (48)
0

(x)=¢(1,t—p'(1-x). (49)

From (47), the control law U(t) and |[ul|, |m||, |i|, ||| € L2NL*®,
it follows that ¢(1,-) € L2 N L. Since ¢ and ¢ are simple,
cascaded transport equations, this implies

¥ llo: 1 lloe € L2 NL®, [[¥]lsos 1 lloc — O.
With the invertibility of the transformation, then yields
[ulloos IMlloe € L2 NL®,  [ullso, M]loc — O.

From the structure of the identifier (3), we will also have
fi(x, -), m(x, -) € > N L, and hence

N - 2
lilloo. Illoe € L2 0L,

C. Global stability

Here, we will prove the global stability of the system, specifi-
cally by proving (30), and thus we introduce the following func-
tion

llloc, Moo = O.

S(E) =lull® + lIml> + ) + [l + 1 1 + 162
+ 801”12l + 2.

The goal of the proof is to demonstrate the existence of a function
6 such that the following inequality holds.

S(t) <6(5(0)),t > 0.

We will reuse the Lyapunov function from Appendix to show that
the system’s state remains stable over time.

Vi(t) =Va(t) + vy G + v, el + vs g
y

by NGl + 2
4 2ys ’

where
1 1
Vy(t) = / e "*ed(x, t)dx + / e’ el(x, t)dx,
0 0
leads to the following upper bound:
Vi(t) < — he 7 ej(1, t) — ae3(0, £)m*(0, t) — Aye ™ [les(1)]|?
— 2pe77 ex(t)I* @ (6)]* — ne3(0, t)

— uyllea(0)* — 2pe” llex(t)|1* e (1)1, (50)
which shows that Vi(t) is non-increasing and hence bounded.
Thus implies that the Vi(t) < V1(0) and limit lim;_ o, V4(t) =
V1,00 exists. By integrating (50) from zero to infinity, we obtain
the following upper bound:

o0 o0
)Le’)’/ e§(1,r)dz+x/ e3(0, T)m*(0, t)dt

0 -~ 0
+ Aye” f lea(e)l*dz
OOO o]
+ 206”/ lea(D) Il (7)) *dT +M/ e5(0, 7)dr
0 0

o0
+ouy / lea(®)li%dr + 2pe /
0 0
< V4(0).

lea(D) I e ()lI*de

From (42) and (43), it can be concluded that there are con-
stants 6; > 0 and 6, > 1 such that

ligsll1 <6:1V1(0), (51)
llg71l1 <62V1(0). (52)



K. Lv, . Wang, Y. Zhang et al.

Table 2 5 .
Comparison of computation time of kernels K* and K™.

Spatial step size Numerical solver (s) NO(s)

Speedup  Error

dx=0.01 8.221 x 1073 438 x 103 2x 0.024
dx=0.05 2.432 x 1072 442 x 1073 58x 0.031
dx=0.001 8.701 x 107! 4513 x 1073 192x 0.037
dx=0.0005 3.191 4631 x 1073 689x 0.045

10

—— Train Loss

102 4 Test Loss

10!

10°

107! ‘

102 ‘\,\\, |

S
1073

T T T T T T T
0 100 200 300 400 500 600

Fig. 3. The train and test loss for neural operator X.

Recalling (41), we have that

V(0) = V(O + 8OV +g5(0)

We also have from Lemma B.6 in Krstic, Kokotovic, and Kanel-
lakopoulos (1995) that

V(t) < (e72V(0) + gyl et (53)
We then introduce the function
Ve(t) := Va(t) + V(¢).
Noticing that
Vi(t) < V1(0) < 6,V1(0)e”1), (54)
we achieve from (53), (54), (51) and (52) the following
Ve(t) =V(t) + Va(t)
<(e™2'V(0) + llgy I)e!" + ,v3(0)e"
<(6,V(0) + 6,V1(0))el6 1t + 6,V/;(0)e” "1
<26,Ve(0)e’16(0),

This Lyapunov functional can be represented by an equivalent
norm, and the bounds of this equivalent norm are determined by
two positive constants k; > 0 and k, > 0.

k1S(t) < Vi(t) < kaS(t).
So we have

K
S(t) < 2;72925(0)&1"25(0). -
<1

5. Simulations

This section will present and analyze the performance of the
proposed NO-based adaptive controllers for two PDE models: (i)
a general 2 x 2 hyperbolic system (3) (ii) the ARZ PDE system.
Through these examples, we will demonstrate the effectiveness
of the NO-based adaptive control design.
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5.1. Simulation of the coupled 2 x 2 hyperbolic system

A. Simulation configuration

The coefficients are defined as c;(x) = cos(o7 cos™(x)), c2(x) =
cos(oy cos™(x)), c3(x) = sin(1 — o3x) + 1 and c4(x) = cos(o4x)
with the shape parameters o1, 03, 03 and o4. Although this paper
uses specific Chebyshev polynomial forms, sine functions, and
cosine functions, our framework is applicable to any compact set
of continuous functions. We use the first order finite difference
scheme to solve PDEs, where the time step dt = 0.005 s, the
spatial step dx = 0.05 m, the total time T = 10 s, and the length
L = 1 m. The initial conditions are ug = sin(2mwx), mg = x.

B. Dataset generation and NO training

We choose 10 sets of (c1, c3, €3, C4, ) randomly sampled with
o1 ~ U(3.5,4.5), 0o ~ U(0.8, 1), 03 ~ U(20, 21), 04 ~ U(10, 11)
and r ~ U(2, 5), where U(a, b) denotes the uniform distribution
over the interval [a, b]. We simulate trajectories using adaptive
control methods and calculate the corresponding kernel functions
using numerical solvers. In practice, during DeepONet design, we
choose a sufficiently expressive architecture to ensure accurate
approximation of the kernel functions as shown in Fig. 2. Each
trajectory was sampled at 1000 time points, resulting in a dataset
of 10000 sets of (¢1, ¢y, C3, C4, T, K¥, K™) for training. We trained
the model on an Nvidia RTX 4060 Ti GPU. After 600 epochs of
training, the L2 error of neural operator X reached 1.2 x 1073,
and the test error was 1.1 x 1073, as shown in Fig. 3.

C. Computation time comparison

Table 2 provides a comparison of the computation time of
solving kernels at each time step using the numerical solver
and the trained DeepONet model. We can see that as the sam-
pling accuracy improves, the acceleration obtained by the NO
becomes substantial. We computed the average absolute error
f; f;(|f<“ — K" 4 |K™ — K™|)d€ dx between numerical solutions
and NO solutions with different step sizes. Although the er-
ror slightly increases with the decrease of step size, they are
quite small at all step sizes. Because adaptive control requires
calculating control gain at every step of updating parameter esti-
mation, quickly solving the kernel function can help improve the
performance of adaptive control.

D. Simulation results

We test the performance of the closed-loop system stability
with test values (o1 = 4,02 = 0.9,03 = 20.1,04 = 10.1,1 = 4)
unseen during training. Fig. 4 shows the kernels K*, K™ calculated
by the numerical solver, the kernels K%, K™ learned by Deep-
ONet, and the error between them. In Fig. 5, we demonstrate
closed-loop stability with the NO approximated kernel function
for the control feedback law. Figs. 4 and 5 confirm that the
kernels K*, K™ approximated by NO can effectively simulate the
backstepping kernels K*, K™ while maintaining the stability of
the system. All estimated parameters ¢; and 7 are shown in Fig.
6. We emphasize that although in adaptive control the system
parameters (i, ¢, €3, C4 and © may not precisely converge to
their true values, this does not affect the control performance.
This phenomenon is not a problem but rather a characteristic
of adaptive control. The goal of adaptive control is not perfect
system identification, but rather the estimation of parameters
that ensure system stability.

E. Comparative experiment with RL

We will evaluate the performance of NO-based adaptive con-
trol method and RL method for stabilization results under differ-
ent initial conditions. In this work, we implement the Proximal
Policy Optimization (PPO) algorithm. The PDE state is discretized
and used as the observation input to a neural network policy. The
output of the policy network determines the boundary control
action at each time step. The PPO algorithm is trained to minimize
a cumulative cost function, which achieves regulation of the



K. Lv, . Wang, Y. Zhang et al.

ST
. N
e NN \\{
—0.4 N §§§h
-
0.0
x 10 0.0 % *
. —02 "‘3‘5‘3:‘% A — _
5 sy | 2
2 04 “‘“&"0":‘0‘0":& = 04
6 SR \0‘0 &

PRk

Y
R

0.0 “‘ 10

0.5 0.5

t

X

1.0 0.0

i
e
& 0.02
|
o 0.00
2 _0.02
X
0.0
1.0 0.0 4
)
‘;&;,;,o;o;.;o;o;o (?
:'Q;‘;‘sq:‘:.:" ¥I —0.02
"0:‘ o v
XY 2 -0.04
1.0 0.0

1.0 0.0

Automatica 182 (2025) 112553
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Fig. 4. The first row shows the exact estimated kernels K* and K™. The second row shows the NO estimated kernels K* and K™. The last row shows the kernel

errors K* — K" and K™ — K™. All kernels are plotted at the final time T.
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Fig. 5. Simulation of the close-loop system with feedback controller (23) and (29). The left columns of the first and second rows show close-loop system states
u(x, t), m(x, t) with the analyzed kernels K* and K™. The middle columns of the first and second rows show close-loop system states uyo(x, t), myo(X, t) with the
approximated kernels K* and K™. The right columns of the first and second rows show the errors between u(x, t) and uyo(x, t), and between m(x, t) and mpo(x, t),

respectively.

traffic states to a spatially uniform density and velocity. We use
the standard clipped surrogate objective for policy updates. We
choose the initial condition of state u is a sine function

Uug = sin(wgmx), (55)

where wy is the frequency of a sine wave. To evaluate the per-
formance of these two methods, we train DeepONet and RL
at the same frequency wy 2, ensuring all other parame-
ters remained consistent with those in Fig. 4. In the testing
phase, we will use sine initial conditions of different frequencies

10

wo 2,10 to verify the model stability of NO-based adap-
tive control and RL. Fig. 7 shows the stabilization results of
the RL and NO control under different initial conditions. The
comparative experiments highlight a significant advantage of the
NO-based adaptive control method, which consistently demon-
strates robustness across different initial conditions. Specifically,
the NO-based adaptive control method maintains system stability
without requiring retraining even when the initial conditions
are changed. This characteristic underscores its adaptability in
dynamic environments. In contrast, the RL method shows a sig-
nificant dependency on initial conditions. Although it performs
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well under specific conditions encountered during training, it is 5.2. Application simulation of the ARZ traffic system
unstable when faced with unforeseen initial conditions(wg = 10).
In real-world scenarios where initial conditions are often variable A. NO-based adaptive controller

and unpredictable, DeepONet ensures stability and adaptability conl:t(r)(l)ll(l)z\rn?ogr t/l\]lgzsire;)f;énsjstitrlsr;12),avsvt:.70§laor:N(;bta1n the adaptive

without the need for retraining. In summary, this demonstrates
DeepONet’s potential for more reliable applications in adaptive
control systems, where maintaining performance across diverse
conditions is crucial.

1 1
U(t>=/ k“l(l,s,t)ul(s,r)duf Rm(1, €, Om(E. t)de.
0

0
(56)
11
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with the parameter update law
Gi(x, t) = Proj: {yse” e1(x, tu(x, t), é(x, )}, (57)
where
e1(x, t) = my(x, t) — m(x, t),
and the kernels satisfy the following kernel functions
(yp* — v KM (x, &, £) =v*K; (%, £, 1)
+ e(x, K™ (x, £, 1),
(yp* — v KM (x. &, 1) = — (yp* — v K (. €. 1),

. c(x, t
K"(x, x,t) = — ( ),
yDp*
M v* o
K™(x,0,t) =——rK"1(x, 0, t).

According to the approximation of NO in Theorem 3, we get the
NO-based adaptive controller

1 1
U(t)=/ 1%”1(1,s,r)u1(s,r)ds+/ R™(1, €, Om (e, t)de.
0 0

(58)

B. Simulation results
Then, we analyze the performance of the proposed NO-based
adaptive control law for the ARZ traffic PDE system through

12

simulations on a L=600 m road over T=300s. The parameters
are set as follows: free-flow velocity v, = 40 m/s, maximum
density p,, = 160 veh/km, equilibrium density p* = 120 veh/km,
driver reaction time t = 60 s. Let y = 1. Initial conditions are
sinusoidal inputs p(x,0) = p* + 0.1 sin(%)p* and v(x,0) =
v*—0.01 sin( 3’[—"):1* to mimic stop-and-go traffic. Recent advances
in traffic sensing technologies, such as connected vehicles (CVs),
loop detectors, and roadside sensors, provide increasingly dense
and accurate measurements. To generate a sufficient dataset for
training, we use 10 different c(x) functions with T € U[50, 70]
and simulate the resulting PDEs under the adaptive controller
for T = 300 seconds. We sub-sample each (c,k“hk"‘l) pair
every 0.1 s, resulting in a total of 30,000 distinct (c,f(“l,f(ml)
pairs for training the NO. Using the trained NO, we simulate with
the same parameters. Fig. 8 shows the ARZ system is open-loop
unstable. Figs. 9 show the density and velocity of ARZ traffic
system. The blue line indicates the initial condition, whereas the
red line represents the boundary condition of the system. The
results indicate that both the NO-based adaptive method and
the adaptive backstepping control method effectively stabilize the
transportation system. The traffic density and velocity converge
to the equilibrium values of p* = 120 veh/km and v* = 36 m/s,
respectively. As shown in Fig. 10, the boundary control input con-
structed using the DeepONet-based kernels achieves stabilization
performance comparable to that of the exact controller, indicating
that the learned kernels are sufficiently accurate for practical
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Table 3
Computation time and mean square errors (MSE) of density and velocity for the
nominal and NO-based adaptive controllers in traffic control.

Method MSE %

Average
Computation time (s)

Density p Velocity v

Nominal Adaptive Controller 1.51 0 0
NO-based Adaptive Controller 0.043 0.021 0.011

traffic control applications and effectively alleviate traffic conges-
tion. The maximum error does not exceed 10%. The estimated
parameter ¢ is shown in Fig. 10.

Table 3 presents the computation times for both the nom-
inal adaptive controller and the NO-based adaptive controller.
As the baseline result, the nominal adaptive control method is
compared with the NO-based adaptive control method. Notably,
the NO-based adaptive control method not only achieves sig-
nificantly faster average computation times but also maintains
superior accuracy with lower mean square errors. These advan-
tages of the NO-based adaptive control method not only enhance
computational efficiency but also make it highly suitable for
real-time traffic system applications. The NO method’s efficiency
and accuracy represent a substantial advancement, promising
more effective and scalable traffic control strategies in practical
scenarios.

6. Conclusion

We develop a NO-based adaptive boundary control design
for a 2 x 2 linear first-order hyperbolic system. Compared with
the previous studies (Lamarque et al., 2025), (Bhan et al., 2025)
that primarily focused on approximating a single kernel PDE, this
work accelerates the computation of 2 x 2 coupled Goursat-
form PDEs. In this paper, the DeepONet is used to learn the
adaptive control gains for stabilizing the traffic PDE system, and
it is shown that under the DeepONet-approximated kernels the
stabilization of 2 x 2 hyperbolic PDEs can still be achieved with
significant improvement for computational speeds. Experimental
results show that compared to traditional numerical solvers, our
method improves computational efficiency by two orders of mag-
nitude. Additionally, compared with RL, the NO-based adaptive
control strategy is independent of the system'’s initial conditions,
making it more robust for rapidly changing traffic scenarios. Our
method significantly accelerates the process of obtaining adap-
tive controllers in PDE systems, greatly improving the real-time
applicability of adaptive control strategies for mitigating traffic
congestion. In the future, we will incorporate real traffic data into
the training of the neural operator.

Appendix. Proof of Lemma 1

The proof of this lemma follows a similar approach to the
proof of Lemma 9.1 in Anfinsen and Aamo (2019). Property (13)
follows trivially from projection in (11) and Lemma A.1 in Anfin-
sen and Aamo (2019). The result can be easily obtained using the
following Lyapunov function candidate:

Vi(t) =Va(t) + vy IE 2 + vy Gl + vs iIEs )P
s A
+ va el + 2—r2(t), (A1)
Vs
where
1 1

Vy(t) = f e el (x, t)dx + / er*es(x, t)dx.

0 0

Computing the time derivative of (A.1) along (7)-(10) as
. 1
Vi(t) =2 / (e77%extx, Dewtx, 0+ €7%ex(x, Deatr, 1)) d
0
1
+ 27/1_1] Ci(x, t)Cre(x, t)dx
0
1
+ 2y, / Ca(x, t)Ea(x, t)dx
0
1
+2y5 / C3(X, £)C3(x, t)dx
0

1
+ 2y, / Cax, £)Car(x, t)dx + Ayg 'F(E)F(L).
0

Substituting into the dynamics (7)-(10) and integrating by parts,
we obtain

1
Vi(t) = — he 7 e}(1, ) + 2€}(0, £) — Ay / e el (x, t)dx
0
1
+ 2/ e "*ei(Ciu + Cm)dx
0
1
- 2p f e7el(x, 1) (1) dx
0
1
— ues(0,t) — uy/ e’e3(x, t)dx
0
1
+ 2/ e’*e,(Cau + C4m)dx
0

1
- 20 [ eeltn w01
0
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1
+ 2)’1_1/ Ci(x, £)Cqe(x, t)dx
0
1
+ 2y, / Ca(x, £)Car(x, t)dx
0
1
+ 27’3_1/ C3(x, t)Cs¢(x, t)dx
0
] .
+ 2)’4_1 / Calx, t)Cq(x, t)dx + )LVS_W(t)T’(t).
0

Inserting the adaptive laws (11). By using the property (12), we

have
C1(x, £)Cre(x, £) = —C1(x, £)Cqe(x, 1)

—Ci(x, t) Projg, (yie™ " eju, €1(x, t))

IA

—C1(x, t)yre " equ. (A.2)

Similarly for ¢,, €3, €4, and 7. Then we have
X 1
Vi(t) < — re77e3(1,t) + 2e3(0, t) — Ayf e r%e3(x, t)dx
0
1
—2pfeﬂ%quwmwm
0
1
— pe(0,t) — uy / e’ea(x, t)dx
0

1
- pr ere(x, t)llw (£)]dx — AF(t)es(0, £)m(0, t).
0

(A.3)
From the boundary condition (9), we have
e1(0, t) — F(t)m(0, t) = —eq(0, t)m?(0, t). (A4)
For the second and last terms in (A.3), substituting (A.4), we have

1€3(0, t) — AF(t)e1(0, £)m(0, t)
= 2e1(0, t) (e1(0, t) — F(t)m(0, 1))

= —2e3(0, t)m*(0, t). (A5)
By substituting (A.5), we obtain
Vi(t) < — re 7e3(1,t) — 1e2(0, t)m*(0, t) — rye ™" |les(t)]|

— 2pe”7 |les(0)|* e (8)]|* — pne5(0, t)

— pyllea(t* — 2pe” ea(t)1* 1w (£)]1%. (A6)

From (A.6), we obtain that V; is bounded. By the definitions
of V7 and V;, it follows that |eq|, |lez]] € L*°. When (A.6) is
integrated over time from zero to infinity, we conclude the results
that Jleq||, llez|| € L2, (15), and eq(1, -), e5(0, ), [e1(0, -)m(0, -)| €
L. From above results and the adaptive laws (11), we derive
that (16). we choose the Lyapunov function candidate V3(t)
%ys’lfz(t), and use the property (12), we find

2(t)m3(0, t)
14+ m2(0,t)

This implies that V3 is upper-bounded, and hence we have V3 €
L*°. By integrating (A.7) from zero to infinity, we obtain (18).
Using (9) and (A.4), we derive that

e3(0, t) = e1(0, t) (F(t)m(0, t) — e1(0, t)m*(0, 1))
F2(t)m*(0, t)
1+ m2(0, t)

and from |e;(0, -)m(0, -)| € L? and (18), we have e;(0, -) € L%

V3(t) < —F(t)es(0, £)m(0, t) < (A7)

_ (A.8)

— €3(0, t)m*(0, t),
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