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 a b s t r a c t

The uncertainty in human driving behaviors leads to stop-and-go traffic congestion on freeway. 
The freeway traffic dynamics are governed by the Aw–Rascle–Zhang (ARZ) traffic Partial Differential 
Equation (PDE) models with unknown relaxation time. Motivated by the adaptive traffic control 
problem, this paper presents a neural operator (NO) based adaptive boundary control design for 
the coupled 2 × 2 hyperbolic systems with uncertain spatially varying in-domain coefficients and 
boundary parameter. In traditional adaptive control for PDEs, solving backstepping kernel online can be 
computationally intensive, as it updates the estimation of coefficients at each time step. To address this 
challenge, we use operator learning, i.e. DeepONet, to learn the mapping from system parameters to 
the kernels functions. DeepONet, a class of deep neural networks designed for approximating operators, 
has shown strong potential for approximating PDE backstepping designs in recent studies. Unlike 
previous works that focus on approximating single kernel equation associated with the scalar PDE 
system, we extend this framework to approximate PDE kernels for a class of the first-order coupled 
2 × 2 hyperbolic kernel equations. Our approach demonstrates that DeepONet is nearly two orders of 
magnitude faster than traditional PDE solvers for generating kernel functions, while maintaining a loss 
on the order of 10−3. In addition, we rigorously establish the system’s stability via Lyapunov analysis 
when employing DeepONet-approximated kernels in the adaptive controller. The proposed adaptive 
control is compared with reinforcement learning (RL) methods. Our approach guarantees stability and 
does not rely on initial values, which is essential for rapidly changing traffic scenarios. This is the 
first time this operator learning framework has been applied to the adaptive control of the ARZ traffic 
model, significantly enhancing the real-time applicability of this design framework for mitigating traffic 
congestion.

© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies.
1. Introduction

Stop-and-go traffic congestion is a very common phenomenon 
in major cities around the world. The traffic congestion on high-
ways leads to many unsafe driving behaviors, as well as increased 
fuel emissions, environmental pollution, and increased commut-
ing time (Belletti, Huo, Litrico, & Bayen, 2015; De Palma & Lindsey, 
2011). The traffic congestion is characterized by the propagation 
of shock waves on road, caused by delayed driver response. 
There have been many studies on traffic stabilization using PDE 
models, such as the first-order hyperbolic PDE model proposed by 
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Ligthill and Whitham and Richards (LWR) (Lighthill & Whitham, 
1955; Richards, 1956) to describe traffic density waves on high-
ways. Then Aw and Rascle (2000) and Zhang (2002) proposed 
the second-order nonlinear hyperbolic PDE model to describe the 
evolution of velocity and density states in traffic flow. The ARZ 
model is a 2 × 2 hyperbolic PDE system and widely used for 
describing dynamics of the stop-and-go traffic oscillations. In this 
paper, we adopt the ARZ model and develop adaptive boundary 
control designs for traffic stabilization.

1.1. PDE backstepping for traffic control

The control strategy for freeway traffic congestion is usu-
ally based on static road infrastructure to regulate traffic flow, 
such as ramp metering and varying speed limits. Various traffic 
boundary control designs have been proposed to smooth traffic 
in the works of Bekiaris-Liberis and Delis (2019), Zhang, Prieur, 
and Qiao (2019) as well as Karafyllis, Bekiaris-Liberis, and Papa-
georgiou (2018). While Bekiaris-Liberis and Delis utilize Adaptive 
Cruise Control vehicles for in-domain actuation as control in-
puts (Bekiaris-Liberis & Delis, 2019), Karafyllis et al. design a 
data mining, AI training, and similar technologies.
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boundary feedback law to manage inlet demand Karafyllis et al. 
(2018). The boundary control strategy using PDE backstepping is 
first proposed in Yu and Krstic (2019) to stabilize the linearized 
ARZ system, including full state feedback and output feedback. 
Recent efforts (Burkhardt, Yu, & Krstic, 2021; Yu, Auriol, & Krstic, 
2022; Yu & Krstic, 2018a, 2018b, 2022; Zhang, Yu, Auriol, & 
Pereira, 2023) have further developed backstepping controllers 
for various traffic scenarios including multi-lane, multi-class and 
mixed-autonomy traffic. This paper primarily focuses on adaptive 
control of traffic PDE systems with uncertain parameters.

In traffic flow modeling, relaxation time is a critical parameter 
representing drivers’ reaction delays to evolving traffic condi-
tions. However, heterogeneity and unpredictability of individual 
driver behavior makes it impossible to obtain the relaxation 
time in practice. This uncertainty in relaxation time can signif-
icantly impact the stability and performance of traffic systems. 
Traditional control methods struggle to handle such uncertain-
ties, making it difficult to ensure system stability and optimal 
performance under varying traffic conditions. To address these 
challenges, we adopt adaptive control strategies that allow for 
real-time adjustment of the controller gains to accommodate 
unknown or time-varying system characteristics, ensuring the 
desired system performance.

Early developments in adaptive control for PDEs, as in Lo-
gemann and Townley (1997), addressed systems stabilized via 
high-gain feedback, under a relative degree one condition. While 
these approaches ensured parameter identifiability, they required 
control input to be applied throughout the spatial domain. Con-
siderable progress has been achieved in the adaptive stabiliza-
tion of PDEs with uncertain parameters, especially for hyper-
bolic and parabolic systems (Böhm, Demetriou, Reich, & Rosen, 
1998; Hong & Bentsman, 1994; Krstic & Smyshlyaev, 2008a; 
Smyshlyaev & Krstic, 2007). Adaptive control methods (Belhad-
joudja, Maghenem, Witrant, & Prieur, 2023; Di Meglio, Bresch-
Pietri, & Aarsnes, 2014; Kawan, Mironchenko, & Zamani, 2022) 
can be categorized into Lyapunov-based design, identifier-based 
design and swapping-based design. After a decade of research, 
advancements in adaptive control have begun to be applied to 
coupled hyperbolic PDEs (Anfinsen & Aamo, 2019).

Although adaptive control for PDE systems with unknown pa-
rameters has been extensively studied (Anfinsen & Aamo, 2018; 
Auriol, 2020; Hu, Di Meglio, Vazquez, & Krstic, 2015; Krstic & 
Smyshlyaev, 2008b; Smyshlyaev, Cerpa, & Krstic, 2010; Wang 
& Krstic, 2020) and was first applied for the ARZ PDE model 
in Yu and Krstic (2018a). The practical implementation of the 
adaptive controller for the traffic systems still faces challenge. 
This is because the adaptive control process simultaneously re-
quires the estimation of unknown system parameters and PDE 
states. After each time step, it is necessary to recalculate the 
solution to the PDE corresponding to the gain kernel function 
in order to update the estimated system parameter functions. 
This places extremely high demands on real-time computation. 
The computational resources required for calculation of the gain 
function increase significantly with spatial sampling precision 
when applying traditional finite difference and finite element 
methods. In this paper, we adopt neural operators to accelerate 
computation of adaptive PDE backstepping controllers.

1.2. Advances in machine learning for PDE traffic control

With rapid advances in machine learning, data-driven meth-
ods for solving, modeling and control of PDEs have received 
widespread attention including physics-informed learning, rein-
forcement learning and operator learning. Physics-Informed Neu-
ral Networks (PINNs) directly incorporates physical constraints 
into neural networks training by embedding the physical laws 
2

of PDEs into the loss function. This enables PINNs to solve PDEs 
without large amounts of training data. Mowlavi and Nabi extend 
PINNs method to PDE optimal control problems in Mowlavi and 
Nabi (2023). Zhao proposed a novel hybrid Traffic state estimation 
(TSE) approach called Observer-Informed Deep Learning (OIDL), 
which integrates a PDE observer and deep learning paradigm to 
estimate spatial–temporal traffic states from boundary sensing 
data in Zhao and Yu (2023). However, PINNs need to be retrained 
for each new set of boundary and initial conditions, which poses 
limitations in adaptive control applications.

Reinforcement learning (RL) has also been increasingly ap-
plied for PDE control problems, particularly in boundary and 
feedback control. RL continuously optimizes strategies to achieve 
real-time control of complex PDE systems. In the field of traffic 
management, researchers have been applying RL to various traffic 
issues. Wu et al. used the city mobility traffic micro-simulator 
SUMO to design a deep RL framework for hybrid autonomous 
traffic in various experimental scenarios (Wu, Kreidieh, Vinitsky, 
& Bayen, 2017). Under the same framework, Qu, Yu, Zhou, Lin, 
and Wang (2020) proposed a reinforcement learning-based car-
following model for electric, connected, and automated vehicles 
to reduce traffic oscillations and improve energy efficiency. Yu, 
Park, Bayen, Moura, and Krstic (2021) presented the exploration 
using RL for traffic PDE boundary control. However, RL has limited 
generalization ability in practical applications. RL may perform 
well under the specific initial conditions. However, for initial 
conditions outside the training range, there may be performance 
degradation or even failure. RL may be sensitive to hyperparam-
eters and exhibit unpredictable behavior, making it difficult to 
ensure consistent and stable performance in different scenarios.

Traditional neural networks typically learn mappings between 
finite dimensional Euclidean spaces, but with the advancement of 
research, this method has been extended to the field of NO (Lu, 
Jin, Pang, Zhang, & Karniadakis, 2021). NO-based learning meth-
ods focus on mapping between function spaces and are specifi-
cally designed for solving PDEs and dynamical systems. Compared 
with traditional machine learning methods, NO have two unique 
advantages. Firstly, theoretically speaking, NO can learn the map-
ping of the entire system parameter set, rather than being limited 
to a single system parameter like standard neural networks. 
Secondly, from an empirical perspective, research work (Lu et al., 
2021; Shi et al., 2022) has shown that NO have significantly better 
accuracy than traditional deep learning methods when simulat-
ing complex functions. Therefore, NO not only solves individual 
equation instances, but can also handle the problems of the entire 
PDE family.

Recent research has effectively utilized DeepONet for one-
dimensional transport PDEs (Bhan, Shi, & Krstic, 2023), reaction–
diffusion equations and observer designs (Krstic, Bhan, & Shi, 
2024), as well as for hyperbolic PDEs with delay (Qi, Zhang, & 
Krstic, 2024), parabolic PDEs with delays (Wang, Diagne, & Krstić, 
2025b), 2 × 2 hyperbolic PDEs (Wang, Diagne, & Krstic, 2025a), 
traffic flow (Zhang, Zhong, & Yu, 2024) and cascaded parabolic 
PDEs (Lv, Wang, & Cao, 2024). In contrast to the approximate 
backstepping transformations used in Bhan et al. (2023), Krstic 
et al. (2024), Lv et al. (2024), Qi et al. (2024), Wang et al. (2025a, 
2025b), Zhang et al. (2024), this paper adopts the exact back-
stepping transformation, referred to as a gain-only approach. The 
gain-only approach focuses on approximating a 1D gain ker-
nel, simplifying network design, reducing training set size and 
time, and easing the derivation of the perturbed target system, 
which have been successfully used in gain scheduling that ad-
just controller gains based on current states of nonlinear PDE 
system (Lamarque, Bhan, Vazquez, & Krstic, 2024) and several 
benchmark unstable PDEs (Vazquez & Krstic, 2024). A recently de-
veloped method based on power series approximations (Vazquez, 
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Chen, Qiao, & Krstic, 2023), along with its MATLAB extension (Lin, 
Vazquez, & Krstic, 2024), shows promise as a tool for generating 
training datasets. The application of NO-approximated gain ker-
nels becomes even more valuable for adaptive control, where the 
kernel must be recomputed online at each time step to accom-
modate updated estimates of the plant parameters. This was first 
explored for first-order hyperbolic PDE in Lamarque, Bhan, Shi, 
and Krstic (2025) and extended to the reaction–diffusion equation 
in Bhan, Shi, and Krstic (2025). Different from Bhan et al. (2025), 
Lamarque et al. (2025), where the kernel equation involves a 
single kernel, in this work, we extend the results of Lamarque 
et al. (2025) to the ARZ traffic models which involved the coupled 
heterogeneous hyperbolic PDEs. The technical challenges arise 
from both the more complex kernel computations and the proof 
analysis of the higher-order PDE systems with the approximated 
controllers.

Contributions: The main contributions are summarized as 
follows:

• We present an NO-based adaptive control method to sta-
bilize the ARZ traffic PDE model with unknown relaxation 
time. Additionally, we extend stability schemes for more 
general 2 × 2 hyperbolic systems with uncertain spatially 
varying in-domain coefficients and boundary parameter. 
Compared to the relevant works (Bhan et al., 2025; Lamar-
que et al., 2025), which approximate single kernel, a key 
technical challenge is dealing with the approximation of 
coupled 2 × 2 Goursat-form PDE kernels in the stabilization 
of coupled 2 × 2 hyperbolic PDEs.

• To address the computational challenges associated with 
solving gain kernel equations, we integrate DeepONet into 
the adaptive control framework. It is shown that the NO is 
almost two orders of magnitude faster than the PDE solver 
in solving kernel functions, and the loss remains on the 
order of 10−3. To the best of our knowledge, this is the first 
study to integrate DeepONet with adaptive control in traffic 
flow systems, demonstrating its potential to improve the 
computational efficiency of control schemes in congested 
traffic scenarios.

• Through comparative experiments with RL, it has been 
proven that our method does not rely on initial values 
compared to RL and provides a model-based solution with 
guaranteed stability. In addition, we theoretically prove the 
system’s stability through Lyapunov analysis when replacing 
with the DeepONet approximation kernels in the adaptive 
controller.

Organization of paper:The paper is organized as follows. Sec-
tion 2 introduces ARZ traffic PDE model and a nominal adaptive 
backstepping control scheme designed for 2 × 2 hyperbolic PDEs. 
Section 3 gives a series of properties for the gain kernel and its 
time derivative and introduces the approximation of feedback 
kernel operators. Section 4 presents the stabilization achieved 
through the application of approximate controller gain functions 
via DeepONet. Numerical simulations are presented in Section 5. 
Section 6 presents the conclusion.
Notation. We present the nomenclature for kernel learning with 
exact and approximate operators in Table  1. We define the L2-
norm for χ (x) ∈ L2[0, 1] as ∥χ∥2 =

∫ 1
0 |χ (x)|2dx. We use ∥ · ∥∞

for the infinity-norm, that is ∥χ∥∞ = supx∈[0,1] |χ (x)|. We set 
∥χ∥1 =

∫ 1
0 |χ (x)| dx.

2. Nominal adaptive control design

2.1. ARZ PDE traffic model

The ARZ PDE model is used to describe the formation and 
dynamics of the traffic oscillations which refer to variations of 
3

Table 1
Nomenclature for kernel learning with exact and approximate operators.
 exact operator K  
 neural operator K̂  
 unknown model parameters (c1, c2, c3, c4, r)  
 estimated model parameters (ĉ1, ĉ2, ĉ3, ĉ4, r̂)  
 exact kernel (K u, Km) = K(c1, c2, c3, c4, r) 
 exact estimated kernel (K̆ u, K̆m) = K(ĉ1, ĉ2, ĉ3, ĉ4, r̂) 
 approximate estimated kernel (K̂ u, K̂m) = K̂(ĉ1, ĉ2, ĉ3, ĉ4, r̂) 

traffic density and speed around equilibrium values. It consists of 
a set of 2 × 2 hyperbolic PDEs for traffic density and velocity. The 
ARZ model of (ρ(x, t), v(x, t))-system is given by 

∂tρ + ∂x(ρv) = 0,

∂t (v − V (ρ)) + v∂x (v − V (ρ)) =
V (ρ) − v

τ
,

ρ(0, t) =
q∗

v(0, t)
,

v(L, t) = U(t) + v∗,

(1)

where (x, t) ∈ [0, L] × R+, ρ(x, t) represents the traffic density, 
v(x, t) represents the traffic speed, and τ  denotes the relaxation 
time, which refers to the time required for driver behavior to 
adapt to equilibrium. This parameter is used to describe the pro-
cess by which vehicle speed adjusts to match the traffic density. 
The variable p(ρ), defined as the traffic system pressure, is related 
to the density by the equation

p(ρ) = c0(ρ)γ ,

and c0, γ ∈ R+. The equilibrium velocity–density relationship 
V (ρ) is given in Greenshield model:

V (ρ) = vf

(
1 −

(
ρ

ρm

)γ)
,

where vf  is the velocity of free flow, ρm is the maximum density 
of free flow, and (ρ∗, v∗) are the equilibrium points of the system 
with v∗

= V (ρ∗). We consider a constant traffic flux q∗
=

ρ∗v∗ entering the domain from x = 0 and there is a Varying 
Speed Limit(VSL) boundary control at the outlet. U(t) is defined 
as variation from steady state velocity. The VSL at outlet shows 
v∗ with U(t) which we will design later. We can apply the change 
of coordinates introduced in Yu and Krstic (2018b) to rewrite 
it in the Riemann coordinates and then map it to a decoupled 
first-order 2 × 2 hyperbolic system. 

∂tu1 + v∗∂xu1 = 0,
∂tm1 − (γ p∗

− v∗)∂xm1 = c(x)u1,

u1(0, t) = r0m1(0, t),
m1(L, t) = U(t),

(2)

where

c(x) = −
1
τ
exp(−

x
τv∗

), r0 =
ρ∗V (ρ∗) + v∗

v∗
.

The relaxation time τ  describes how fast drivers adapt their 
speed to equilibrium speed–density relations. Its value is usu-
ally difficult to measure in practice and is easily affected by 
various external factors. Therefore, we propose adaptive control 
law. Motivated by the second-order ARZ model, we first pro-
pose NO-based adaptive design for a more general framework of 
2 × 2 hyperbolic PDEs with spatially varying coefficients, as the 
linearized ARZ model (2) is a special case of such systems.
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2.2. Adaptive control for coupled 2 × 2 hyperbolic PDEs

We consider the first-order coupled 2 × 2 hyperbolic PDE 
system with four spatially variable coefficients, 
∂tu(x, t) + λ∂xu(x, t) = c1(x)u(x, t) + c2(x)m(x, t),
∂tm(x, t) − µ∂xm(x, t) = c3(x)u(x, t) + c4(x)m(x, t),

u(0, t) = rm(0, t),
m(1, t) = U(t),

(3)

where t ∈ R+ is the time, x ∈ [0, 1] is the space, the states 
are given by u,m and the initial conditions are u(x, 0) = u0(x), 
m(x, 0) = m0(x) where u0,m0 ∈ L2([0, 1]). The positive transport 
speeds λ,µ ∈ R are known. We assume the spatially vari-
able coefficients c1(x), c2(x), c3(x), c4(x) ∈ C([0, 1]) and boundary 
coefficient r ∈ R are unknown.

Note that system (3) is 2 × 2 hyperbolic system with spatially 
variable coefficients in domain, which is different from the sys-
tem in Anfinsen and Aamo (2018) with the constant coefficients. 
System (3) is a direct extension of the system in Anfinsen and 
Aamo (2018), where the difference lies in the designed adaptive 
update law.

To ensure the well-posedness of the kernel PDEs, the adap-
tive control estimation requires bounded assumptions. Our basic 
assumption is as follows. 

Assumption 1.  Bounds are known on all uncertain parameters, 
that is, there exists some constants c̄i, i = 1 · · · 4, and r̄ so that 
∥ci∥∞ ≤ c̄i, i = 1 · · · 4, |r| ≤ r̄. (4)

We first propose an adaptive control design using passive 
identifier design method, which includes the exact estimated 
backstepping kernels K̆ u, K̆m.

We consider the identifier 
∂t û(x, t) = − λ∂xû(x, t) + ĉ1(x, t)u(x, t)

+ ĉ2(x, t)m(x, t) + ρe1(x, t)∥ϖ (t)∥2,

∂tm̂(x, t) =µ∂xm̂(x, t) + ĉ3(x, t)u(x, t)

+ ĉ4(x, t)m(x, t) + ρe2(x, t)∥ϖ (t)∥2,

û(0, t) =
r̂u(0, t) + u(0, t)m2(0, t)

1 + m2(0, t)
,

m̂(1, t) =U(t),

(5)

where ρ > 0, 
e1(x, t) = u(x, t) − û(x, t), e2(x, t) = m(x, t) − m̂(x, t), (6)

are errors between u and m and their estimates û and m̂, ĉi and 
r̂ are estimates ci and r . We define
ϖ (x, t) = [u(x, t),m(x, t)]T ,

for some initial conditions
û0, m̂0 ∈ L2([0, 1]).

The error signals (6) can straightforwardly be shown to have 
dynamics

∂te1(x, t) = − λ∂xe1(x, t) + c̃1(x, t)u(x, t)

+ c̃2(x, t)m(x, t) − ρe1(x, t)∥ϖ (t)∥2, (7)
∂te2(x, t) =µ∂xe2(x, t) + c̃3(x, t)u(x, t)

+ c̃4(x, t)m(x, t) − ρe2(x, t)∥ϖ (t)∥2, (8)

e1(0, t) =
r̃(t)m(0, t)
1 + m2(0, t)

, (9)

e2(1, t) =0, (10)
4

where

r̃ = r − r̂, c̃i = ci − ĉi, i = 1, . . . , 4.

We choose the following update laws 
ĉ1t (x, t) = Projc̄1

{
γ1e−γ xe1(x, t)u(x, t), ĉ1(x, t)

}
,

ĉ2t (x, t) = Projc̄2
{
γ2e−γ xe1(x, t)m(x, t), ĉ2(x, t)

}
,

ĉ3t (x, t) = Projc̄3
{
γ3eγ xe2(x, t)u(x, t), ĉ3(x, t)

}
,

ĉ4t (x, t) = Projc̄4
{
γ4eγ xe2(x, t)m(x, t), ĉ4(x, t)

}
,

̇̂r(t) = Projr̄
{
γ5e1(0, t)m(0, t), r̂(t)

}
,

(11)

where γ , γ1, γ2, γ3, γ4, γ5 > 0 are scalar design gains. Proj
denotes the projection operator

Projω̄{τ , ω̂} =

{
0 |ω̂| ≥ ω̄ and ω̂τ ≥ 0,
τ otherwise.

The projection operator Projω̄{τ , ω̂} is designed to constrain the 
update of parameter ω̂, ensuring that it does not exceed the 
predefined bound ω̄. The adaptive laws (11) have the following 
properties for all t > 0 (Krstic, 2009) 

− ω̃T Projω̄{τ , ω̂} ≤ −ω̃T τ . (12)

Lemma 1 (Properties of passive identifier).  Consider the system 
(3) and the identifier (5), with an arbitrary initial condition û0 =

û(·, 0), m̂0 = m̂(·, 0) such that ∥û0∥ < ∞, ∥m̂0∥ < ∞, along with 
the update law (11) with an arbitrary Lipschitz initial conditions 
satisfying the bounds (4), guarantees the following properties

∥ĉi(·, t)∥∞ ≤ c̄i, ∀i = 1, . . . , 4, |r̂| ≤r̄, (13)

∥e1∥, ∥e2∥ ∈L∞
∩ L2, (14)

∥e1∥∥ϖ∥, ∥e2∥∥ϖ∥ ∈L2, (15)

|e1(0, ·)|, |e1(1, ·)|, |e2(0, ·)|, |e1(0, ·)u(0, ·)| ∈L2, (16)

∥∂t ĉi∥, |̇̂r| ∈L2, (17)
r̃m(0, ·)√
1 + m2(0, ·)

∈L2. (18)

Proof.  The proof can be found in Appendix. ■

Considering the plant (3) with unknown parameters ci, i =

1, . . . , 4 and r , we will design a nominal adaptive control law to 
achieve global stability.

We consider the following adaptive backstepping transforma-
tion 
w(x, t) =û(x, t),

z(x, t) =m̂(x, t) −

∫ x

0
K̆ u(x, ξ , t)û(ξ, t)dξ

−

∫ x

0
K̆m(x, ξ , t)m̂(ξ, t)dξ = T [û, m̂](x, t),

(19)

where the kernels K̆ u and K̆m satisfy the following kernel func-
tions 
µK̆ u

x (x, ξ , t) =λK̆ u
ξ (x, ξ , t) + ĉ3(ξ, t)K̆m(x, ξ , t)

+ (ĉ1(ξ, t) − ĉ4(ξ, t))K̆ u(x, ξ , t),

µK̆m
x (x, ξ , t) = − µK̆m

ξ (x, ξ , t) + ĉ2(ξ, t)K̆ u(x, ξ , t),

K̆ u(x, x, t) = −
ĉ3(x, t)
λ+ µ

,

K̆m(x, 0, t) =
λr̂(t)

K̆ u(x, 0, t).

(20)
µ
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The coupled 2 × 2 Goursat-form PDEs, governed by two gain 
kernels, are defined over the triangular domain T1, given by: 
T1 = {(x, ξ ) | 0 ≤ ξ ≤ x ≤ 1}. (21)

The kernel functions K̆ u(x, ξ , t) and K̆m(x, ξ , t) are computed on-
line by solving the equation of 2 × 2 hyperbolic PDEs whose dy-
namics depend on the unknown parameters ĉi(x, t), i = 1, . . . , 4, 
and r̂(t). These parameters are continuously estimated and up-
dated via the adaptive laws (11), so that at each time step, the 
kernel functions must be continually recalculated according to 
the new ĉi(x, t) and r̂(t) estimate.

Using the transformation (19), we get the following target 
system 
wt (x, t) = − λwx(x, t) + ĉ1w(x, t) + ĉ1e1(x, t) + ĉ2z(x, t)

+

∫ x

0
ω(x, ξ , t)w(ξ, t)dξ

+

∫ x

0
κ(x, ξ , t)z(ξ, t)dξ

+ ĉ2e2(x, t) + ρe1(x, t)∥ϖ (t)∥2,

zt (x, t) =µzx(x, t) + ĉ4z(x, t) − λK̆ u(x, 0, t)r(t)e2(0, t)

− λK̆ u(x, 0, t)r̃(t)z(0, t) + λK̆ u(x, 0, t)e1(0, t)

−

∫ x

0
K̆ u
t (x, ξ , t)w(ξ, t)dξ

−

∫ x

0
K̆m
t (x, ξ , t)T−1

[w, z](ξ, t)dξ

+ T
[
ĉ1e1 + ĉ2e2, ĉ3e1 + ĉ4e2

]
(x, t)

+ ρT [e1, e2](x, t)∥ϖ (t)∥2,

w(0, t) =r(t)z(0, t) + r(t)e2(0, t) − e1(0, t),
z(1, t) =0,

(22)

where the coefficient ω and κ are chosen to satisfy

ω(x, ξ , t) = ĉ2(x, t)K̆ u(x, ξ , t) +

∫ x

ξ

κ(x, s, t)K̆ u(s, ξ , t)ds,

κ(x, ξ , t) = ĉ2(x, t)K̆m(x, ξ , t) +

∫ x

ξ

κ(x, s, t)K̆m(s, ξ , t)ds.

From the boundary condition of (3), (19) and boundary condition 
of (22), the nominal stabilizing controller is straightforwardly 
derived as follows 

U(t) =

∫ 1

0
K̆ u(1, ξ , t)û(ξ, t)dξ +

∫ 1

0
K̆m(1, ξ , t)m̂(ξ, t)dξ . (23)

Next, we present the stability of exact adaptive backstepping 
control, which serves as a guide for what we aim to achieve under 
the NO-based approximate adaptive backstepping design. 

Theorem 1.  [Stability of exact adaptive backstepping control] 
Consider the plant (3) in feedback with the adaptive control law (23) 
along with the update law for ĉ1, ĉ2, ĉ3, ĉ4, r̂ given by (11) and the 
passive identifier û, m̂ given by (5) satisfies the following properties 
for all solutions for all time:

∥u∥, ∥m∥, ∥û∥, ∥m̂∥, ∥u∥∞, ∥m∥∞, ∥û∥∞, ∥m̂∥∞ ∈ L2 ∩ L∞,

∥u∥, ∥m∥, ∥û∥, ∥m̂∥, ∥û∥∞, ∥m̂∥∞, ∥û∥∞, ∥m̂∥∞ ↦→ 0.

Proof.  The proof of this theorem follows a similar approach to 
the proof of Theorem 9.1 in Anfinsen and Aamo (2019). ■

In summary, the exact adaptive backstepping feedback law 
(23) can achieve global stability at the equilibrium point, with 
the system states u(x, t),m(x, t) converging pointwise to zero. 
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However, this method is computationally intensive because it 
requires solving Volterra Eqs. (20) at each time step t. To simplify 
the computation, we propose using the NO K̂ : (ĉ1, ĉ2, ĉ3, ĉ4, r̂) ↦→

(K̂ u, K̂m) to approximate the exact adaptive backstepping gain 
operator K : (ĉ1, ĉ2, ĉ3, ĉ4, r̂) ↦→ (K̆ u, K̆m). This approach al-
lows for neural network evaluation at each time step instead of 
solving the complex equations. In the following section, we will 
introduce how to approximate the operator K using DeepONet 
and use the resulting approximate control gain functions for 
boundary stabilization of plant (3). And we will use the universal 
approximation theorem of DeepONet (Deng, Shin, Lu, Zhang, & 
Karniadakis, 2022) to derive the stability theorem from control 
gain kernel approximations.

3. Neural operator for approximating gain kernels

By proving the continuity and boundedness mentioned above, 
it can be further deduced that for a set of continuous coefficients 
within a certain supremely bounded norm, there exists a NO with 
arbitrary accuracy.

3.1. Properties of the gain kernel functions

Lemma 2.  Let ∥ĉi(·, t)∥∞ ≤ c̄i, |r̂| ≤ r̄ , ∀(x, t) ∈ [0, 1]×R+. Then, 
for any fixed t ∈ R+ and for any λ,µ ∈ R+, ĉi ∈ C([0, 1]) and 
r ∈ R+, t ≥ 0, the gain kernels K̆ u, K̆m satisfying the PDE systems 
(20), have unique C(T1) solutions with the property

|K̆ u(x, ξ , t)| ≤K̄ , (24)

|K̆m(x, ξ , t)| ≤K̄ , (25)

∥K̆ u
t (x, ξ , t)∥ ≤M1∥ĉ1t∥ + M2∥ĉ2t∥ + M3∥ĉ3t∥

+ M4∥ĉ4t∥ + M5|
̇̂r|, (26)

∥K̆m
t (x, ξ , t)∥ ≤M6∥ĉ1t∥ + M7∥ĉ2t∥ + M8∥ĉ3t∥

+ M9∥ĉ4t∥ + M10|
̇̂r|, (27)

where K̄ > 0,Mj > 0, j = 1, . . . , 10 are constants depending on 
the parameter bounds (4).

Proof.  Fix time t ≥ 0. The existence of a unique, bounded 
solution to kernel Eqs. (20) are guaranteed by Coron, Vazquez, 
Krstic, and Bastin (2013, Theorem A.1). Furthermore, this result 
ensures that the solution satisfies uniform bounds of the form
|K̆ u(x, ξ , t)| ≤ K̄ , |K̆m(x, ξ , t)| ≤ K̄ , t ≥ 0,

where K̄  is a constant determined by the compactness of the 
admissible parameter set ĉ1, . . . , ĉ4, r .

Differentiating Eq. (20) with respect to time yields the follow-
ing system in terms of K̆ u

t  and K̆m
t : 

µ K̆ u
tx − λK̆ u

tξ =
(
ĉ1 − ĉ4

)
K̆ u
t + ĉ3K̆m

t

+
(
ĉ1t − ĉ4t

)
K̆ u

+ ĉ3t K̆m,

µK̆m
tx + µK̆m

tξ =ĉ2 K̆ u
t + ĉ2t K̆ u,

K̆m
t (x, 0) =

λr̂
µ

K̆ u
t (x, 0) +

λ̇̂r
µ

K̆ u(x, 0),

K̆ u
t (x, x) = −

ĉ3t
λ+ µ

.

(28)

Applying again the result of Coron et al. (2013, Theorem A.1) 
to the Eqs. (28), one obtains the existence and uniqueness of 
a bounded solution (K̆ u

t , K̆
m
t ), with bounds of the form (26)–

(27). ■
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Fig. 1. The operator learning framework for adaptive control.

3.2. Approximation of the neural operator

In the following discussion, we will first introduce the univer-
sal approximation theorem of DeepONet. This theorem demon-
strates DeepONet’s ability to approximate operators, enabling us 
to use it to learn the backstepping gain kernel mapping of PDEs 
and theoretically guarantee the stability of the adaptive control 
system.

Theorem 2 (DeepONet universal approximation theorem (Deng 
et al., 2022)).  Let X ⊂ Rdx  and Y ⊂ Rdy  be compact sets of vectors 
x ∈ X and y ∈ Y , respectively. Let U : X ↦→ U ⊂ Rdu  and 
V : Y ↦→ V ⊂ Rdv  be sets of continuous functions u(x) and m(y), 
respectively. Let U be also compact. Assume the operator G : U ↦→ V

is continuous. Then for all ϵ > 0, there exist n∗, p∗
∈ N such that 

for each n ≥ n∗, p ≥ p∗, there exist θ (i), ϑ (i) for neural networks 
fN(·; θ (i)), gN(·;ϑ (i)), i = 1, . . . , p, and xj ∈ X, j = 1, . . . , n, with 
corresponding un = (u(x1), u(x2), . . . , u(xn))T , such that

|G(u)(y) − GN(un)(y)| ≤ ϵ

where

GN(un)(y) =

p∑
i=1

gN(un;ϑ
(i))fN(y; θ (i)),

for all functions u ∈ U and for all values y ∈ Y  of G(u).

Fig.  1 presents a schematic diagram of the control circuit, 
illustrating the utilization of neural operators to accelerate the 
generation process of gain kernel functions in PDE adaptive con-
trol.

As illustrated in Fig.  2, the DeepONet consists of two sub-
networks: a Branch Net and a Trunk Net. The Branch Net takes 
a five-channel 2D input and extracts spatial features using two 
convolutional layers, each with a kernel size of 5 and a stride of 
2. The output is flattened and passed through two fully connected 
layers with 512 and 256 neurons, respectively, each followed 
by a ReLU activation. The Trunk Net receives spatial coordinate 
input and processes it through three fully connected layers with 
884, 128 and 256 neurons, also activated by ReLU functions. The 
outputs from both networks are then combined via inner product 
to produce the approximated kernel function value K̂.

Theorem 3.  [Existence of a neural operator to approximating the 
kernels] Fix t > 0. Fix a compact set K ⊂ (C([0, 1]))4×R and define 
the operator K : K ↦→ (C(T1))2

K(ĉ , ĉ , ĉ , ĉ , r̂)(·, t) := (K̆ u(x, ξ ), K̆m(x, ξ )).
1 2 3 4
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Fig. 2. The DeepONet structure for operator K̂.

Then, for all ϵ > 0, there exists a neural operator K̂ : K ↦→ (C(T1))2
such that for all (x, ξ ) ∈ T1,

|K(ĉ1, ĉ2, ĉ3, ĉ4, r̂)(·, t) − K̂(ĉ1, ĉ2, ĉ3, ĉ4, r̂)(·, t)| ≤ ϵ.

Proof.  The continuity of the operator K is derived from Lemma 
2. And this result is based on Theorem 2.1 proposed by B. Deng 
et al. in their study (Deng et al., 2022). ■

4. Stabilization under DeepONet-approximated gain feedback

We will demonstrate that although the adaptive controller 
uses approximate estimated kernel functions, the stability of the 
system is still guaranteed. Based on Theorem  1, we present the 
system stability proof for the adaptive backstepping controller 
using approximate estimation kernels K̂ u, K̂m in the following 
theorem.

Theorem 4 (Stabilization under approximate adaptive backstepping 
control). For all c̄1, c̄2, c̄3, c̄4, r̄ > 0, there exists a constant ϵ0 > 0
such that for all NO approximations K̂ u, K̂m of accuracy ϵ ∈ (0, ϵ0)
provided by Theorem  3, the plant (3) in feedback with the adaptive 
control law 

U(t) =

∫ 1

0
K̂ u(1, ξ , t)û(ξ, t)dξ +

∫ 1

0
K̂m(1, ξ , t)m̂(ξ, t)dξ, (29)

along with the update law for ĉ1, ĉ2, ĉ3, ĉ4 and r̂ given by (11) with 
any Lipschitz initial condition ĉ10 = ĉ1(·, 0), ĉ20 = ĉ2(·, 0), ĉ30 =

ĉ3(·, 0), ĉ40 = ĉ4(·, 0) such that ∥ĉ10∥ ≤ c̄1, ∥ĉ20∥ ≤ c̄2, ∥ĉ30∥ ≤

c̄3, ∥ĉ40∥ ≤ c̄4, and |r̂(0)| ≤ r̄ . The passive identifier û, m̂ given by 
(5) with any initial condition û0 = û(·, 0), m̂0 = m̂(·, 0) such that 
∥û0∥ < ∞, ∥m̂0∥ < ∞, the following properties hold:
∥u∥, ∥m∥, ∥û∥, ∥m̂∥, ∥u∥∞, ∥m∥∞, ∥û∥∞, ∥m̂∥∞ ∈ L2 ∩ L∞,

∥u∥∞, ∥m∥∞, ∥û∥∞, ∥m̂∥∞ ↦→ 0.

Moreover, for the equilibrium (u,m, û, m̂, ĉ1, ĉ2, ĉ3, ĉ4, r̂) = (0, 0, 0,
0, c1, c2, c3, c4, r) the following global stability estimate holds 

S(t) ≤ 2
k2
k1
θ2S(0)eθ1k2S(0), t > 0, (30)

where

S(t) :=∥u∥2
+ ∥m∥

2
+ ∥û∥2

+ ∥m̂∥
2
+ ∥c̃1∥2

+ ∥c̃2∥2

+ ∥c̃3∥2
+ ∥c̃4∥2

+ r̃2,

and k , k , θ  and θ  are strictly positive constants.
1 2 1 2
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Proof.  This proof mainly refers to Anfinsen and Aamo (2019, 
Chapter 9), and makes necessary supplements to the gain approx-
imation error while reducing repetition.

A. DeepONet-perturbed target system
We consider the following adaptive backstepping transforma-

tion (19)
w(x, t) =û(x, t),

z(x, t) =m̂(x, t) −

∫ x

0
K̆ u(x, ξ , t)û(ξ, t)dξ

−

∫ x

0
K̆m(x, ξ , t)m̂(ξ, t)dξ =: T [û, m̂](x, t),

(31)

where K̆ u and K̆m are exact solutions to kernel function (20). The 
transformation is an invertible backstepping transformation, with 
inverse in the same form 
û(x, t) =w(x, t),

m̂(x, t) =z(x, t) +

∫ x

0
L̆uw(ξ, t)dξ

+

∫ x

0
L̆mz(ξ, t)dξ =: T−1

[w, z](x, t)

(32)

where T−1 is an operator similar to T . From Lemma  2, K̆ u, K̆m are 
continuous, there exist unique continuous inverse kernels L̆u, L̆m
defined on T1 and there exists a constant L̄ so that ∥L̆u∥∞ ≤ L̄, 
∥L̆m∥∞ ≤ L̄. We will derive the DeepONet-perturbed target sys-
tem with exact estimated kernels. Because the controller we have 
chosen is (29), where the kernels K̂ u and K̂m are approximated by 
NO. This transformation lead to the following target system
wt (x, t) = − λwx(x, t) + ĉ1w(x, t) + ĉ1e1(x, t) + ĉ2z(x, t)

+

∫ x

0
ω(x, ξ , t)w(ξ, t)dξ

+

∫ x

0
κ(x, ξ , t)z(ξ, t)dξ

+ ĉ2e2(x, t) + ρe1(x, t)∥ϖ (t)∥2, (33)

zt (x, t) =µzx(x, t) + ĉ4z(x, t) − λK̆ u(x, 0, t)r(t)e2(0, t)

− λK̆ u(x, 0, t)r̃(t)z(0, t) + λK̆ u(x, 0, t)e1(0, t)

−

∫ x

0
K̆ u
t (x, ξ , t)w(ξ, t)dξ

−

∫ x

0
K̆m
t (x, ξ , t)T−1

[w, z](ξ, t)dξ

+ T
[
ĉ1e1 + ĉ2e2, ĉ3e1 + ĉ4e2

]
(x, t)

+ ρT [e1, e2](x, t)∥ϖ (t)∥2, (34)

w(0, t) =r(t)z(0, t) + r(t)e2(0, t) − e1(0, t), (35)

z(1, t) = −

∫ 1

0
K̃ u(1, ξ , t)w(ξ, t)dξ

−

∫ 1

0
K̃m(1, ξ , t)T−1

[w, z](ξ, t)dξ := Γ (t), (36)

where

ω(x, ξ , t) = ĉ2(x, t)K̆ u(x, ξ , t) +

∫ x

ξ

κ(x, s, t)K̆ u(s, ξ , t)ds,

κ(x, ξ , t) = ĉ2(x, t)K̆m(x, ξ , t) +

∫ x

ξ

κ(x, s, t)K̆m(s, ξ , t)ds.

The main difference between the current system (33)–(36) and 
the system described in (22) is the perturbation Γ (t) in the 
boundary conditions (36). This difference is due to the controller 
(29) using an approximated estimated kernels K̂ u and K̂m instead 
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of the exact estimated kernels K̆ u and K̆m. The specific derivation 
process of (36) is as follows

z(1, t) =m̂(1, t) −

∫ 1

0
K̆ u(1, ξ , t)û(ξ, t)dξ

−

∫ 1

0
K̆m(1, ξ , t)m̂(ξ, t)dξ

=U(t) −

∫ 1

0
K̆ u(1, ξ , t)û(ξ, t)dξ

−

∫ 1

0
K̆m(1, ξ , t)m̂(ξ, t)dξ

=

∫ 1

0
K̂ u(1, ξ , t)û(ξ, t)dξ +

∫ 1

0
K̂m(1, ξ , t)m̂(ξ, t)dξ

−

∫ 1

0
K̆ u(1, ξ , t)û(ξ, t)dξ −

∫ 1

0
K̆m(1, ξ , t)m̂(ξ, t)dξ

= −

∫ 1

0
K̃ u(1, ξ , t)û(ξ, t)dξ −

∫ 1

0
K̃m(1, ξ , t)m̂(ξ, t)dξ .

By using (32), we obtained (36).
In the following part, we introduce the spatial L2 boundedness 

and regulation of plant and observer states.
We use the following Lyapunov function candidate 

V (t) := V4(t) + aV5(t), (37)

and

V4(t) := ∥w(t)∥2
−δ =

∫ 1

0
e−δxw2(x, t)dx, (38)

V5(t) := ∥z(t)∥2
k =

∫ 1

0
ekxz2(x, t)dx, (39)

where a, δ, k > 0. We deduce that there exist positive constants 
a1, a2 > 0 such that
a1(∥w(t)∥ + ∥z(t)∥)2 ≤ V (t) ≤ a2(∥w(t)∥ + ∥z(t)∥)2.

Before we start the formal calculations of the Lyapunov function, 
we present the formulas derived from Lemma  2
∥K̆ u

∥∞ ≤ K̄ , ∥K̆m
∥∞ ≤ K̄ ,

∥K̃ u
∥∞ ≤ ϵ, ∥K̃m

∥∞ ≤ ϵ,

∥w(t)∥ = ∥û(t)∥,

∥z(t)∥ ≤ (1 + K̄ )∥m̂(t)∥ + K̄∥û(t)∥,

∥m̂(t)∥ ≤ (1 + L̄)∥z(t)∥ + L̄∥w(t)∥,
|Γ (t)| ≤ ϵΓ̄ (∥w∥ + ∥z∥),

where

Γ̄ = 1 + L̄.

The key difference is z2(1, t) = Γ (t)2 ̸= 0. This leads to 
the terms 1

a1
µekϵ2Γ̄ 2V (t) in (40) as follows. There exist posi-

tive constants h1, h2, . . . , h6 and nonnegative, integrable function 
g1, g2, . . . , g5 such that
V̇4(t) ≤h1z2(0, t) − [λδ − h2] V4(t) + h3V5(t)

+ g1(t)V4(t) + g2(t),

V̇5(t) ≤µekz2(1, t) −
[
µ− ekh4 r̃2(t)

]
z2(0, t) + h5V4

− [kµ− h6] V5 + g3(t)V4 + g4(t)V5 + g5(t)

≤
1
a1
µekϵ2Γ̄ 2V (t) −

[
µ− ekh4 r̃2(t)

]
z2(0, t) + h5V4

− [kµ− h6] V5 + g3(t)V4 + g4(t)V5 + g5(t), (40)
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where

g1(t) =e2δρ2
∥e1(t)∥2

∥ϖ (t)∥2,

g2(t) =
(
c̄21 + 4e−δ

)
∥e1(t)∥2

+
(
c̄22 + 4e−δ

)
∥e2(t)∥2

+ 3λe21(0, t) + 3λr̄2e22(0, t),

g3(t) =eδ+k
K̂ u

t (t)
2

+ 2eδ+k
K̂m

t (t)
2

A2
3,

g4(t) =2ρ2eδ+2k (
A2
1∥e1(t)∥

2
+ A2

2∥e2(t)∥
2)

∥ϖ (t)∥2

+ 2ek
K̂m

t (t)
2

A2
4,

g5(t) =λ2K̄ 2 r̄2eke22(0, t) + λ2K̄ 2eke21(0, t)

+ 2ek
(
A2
1c̄

2
1∥e1(t)∥

2
+ A2

1c̄
2
2∥e2(t)∥

2
+ A2

2c̄
2
3∥e1(t)∥

2

+ A2
2c̄

2
4∥e2(t)∥

2
)

+ 4e−δ
(
|e1(t)||2 + ∥e2(t)∥2

)
,

where Ai > 0, i = 1 · · · 4, δ ≥ 1. Thus, we obtain the following 
upper bound calculation 

V̇ (t) ≤ −

[
d −

1
a1
µekϵ2Γ̄ 2

]
V (t) + g6(t)V (t) + g7(t), (41)

for positive constant d and the nonnegative, integrable functions 
g6(t) and g7(t)
g6(t) =max {g1(t) + ag3(t), g4(t)} , (42)

g7(t) =
2r̃2z(0, t)2

1 + m(0, t)2
+ 8br̃2e2(0, t)2 + g2(t) + ag5(t)

+ b
r̃2z(0, t)2

1 + m(0, t)2
z(0, t)2, (43)

where a, b are positive constants. We introduce the positive con-
stant

ϵ0 :=

√
a1(2d − 1)√
2µekΓ̄ 2

.

Thus, if we choose ϵ ∈ (0, ϵ0) we have d−
1
a1
µekϵ2Γ̄ 2 > 1/2 > 0. 

It then follows from Lemma 12 in Anfinsen and Aamo (2017) that
V ∈ L1 ∩ L∞,

and hence
∥w∥, ∥z∥ ∈ L2 ∩ L∞.

Due to the invertibility of the backstepping transformation

∥û∥, ∥m̂∥ ∈ L2 ∩ L∞.

From Lemma  1, ∥e1∥, ∥e2∥ ∈ L2 ∩ L∞, it follows that
∥u∥, ∥m∥ ∈ L2 ∩ L∞.

B. Pointwise-in-space boundedness and regulation
The paper (Vazquez, Krstic, & Coron, 2011) proved that the 

system (3) is equivalent to the following system through an 
invertible backstepping transformation.

ψt (x, t) = −λψx(x, t) + h1(x)ζ (0, t), (44)

ζt (x, t) = µζx(x, t), (45)

ψ(0, t) = rζ (0, t), (46)

ζ (1, t) = U(t) −

∫ 1

0
(G1(ξ )u(ξ ) − G2(ξ )m(ξ ))dξ, (47)

for some bounded functions h1,G1,G2 of the unknown parame-
ters. Eq. (44)–(47) can be explicitly be solved for t > λ−1

+ µ−1

to yield
ψ(x, t) = rζ

(
1, t − µ−1

− λ−1x
)
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+ λ−1
∫ x

0
h1(τ )ζ

(
1, t − µ−1

− λ−1(x − τ )
)
dτ , (48)

ζ (x, t) = ζ
(
1, t − µ−1(1 − x)

)
. (49)

From (47), the control law U(t) and ∥u∥, ∥m∥, ∥û∥, ∥m̂∥ ∈ L2∩L∞, 
it follows that ζ (1, ·) ∈ L2 ∩ L∞. Since ζ  and ψ are simple, 
cascaded transport equations, this implies

∥ψ∥∞, ∥ζ∥∞ ∈ L2 ∩ L∞, ∥ψ∥∞, ∥ζ∥∞ → 0.

With the invertibility of the transformation, then yields
∥u∥∞, ∥m∥∞ ∈ L2 ∩ L∞, ∥u∥∞, ∥m∥∞ → 0.

From the structure of the identifier (3), we will also have 
û(x, ·), m̂(x, ·) ∈ L2 ∩ L∞, and hence
∥û∥∞, ∥m̂∥∞ ∈ L2 ∩ L∞, ∥û∥∞, ∥m̂∥∞ ↦→ 0.

C. Global stability
Here, we will prove the global stability of the system, specifi-

cally by proving (30), and thus we introduce the following func-
tion

S(t) :=∥u∥2
+ ∥m∥

2
+ ∥û∥2

+ ∥m̂∥
2
+ ∥c̃1∥2

+ ∥c̃2∥2

+ ∥c̃3∥2
+ ∥c̃4∥2

+ r̃2.

The goal of the proof is to demonstrate the existence of a function 
θ such that the following inequality holds.
S(t) ≤ θ (S(0)), t ≥ 0.

We will reuse the Lyapunov function from Appendix to show that 
the system’s state remains stable over time.

V1(t) =V2(t) + γ−1
1 ∥c̃1∥2

+ γ−1
2 ∥c̃2∥2

+ γ−1
3 ∥c̃3∥2

+ γ−1
4 ∥c̃4∥2

+
λ

2γ5
r̃2(t),

where

V2(t) =

∫ 1

0
e−γ xe21(x, t)dx +

∫ 1

0
eγ xe22(x, t)dx,

leads to the following upper bound:
V̇1(t) ≤ − λe−γ e21(1, t) − λe21(0, t)m

2(0, t) − λγ e−γ
∥e1(t)∥2

− 2ρe−γ
∥e1(t)∥2

∥ϖ (t)∥2
− µe22(0, t)

− µγ ∥e2(t)∥2
− 2ρeγ ∥e2(t)∥2

∥ϖ (t)∥2, (50)

which shows that V1(t) is non-increasing and hence bounded. 
Thus implies that the V1(t) < V1(0) and limit limt→∞ V1(t) =

V1,∞ exists. By integrating (50) from zero to infinity, we obtain 
the following upper bound:

λe−γ

∫
∞

0
e21(1, τ )dτ + λ

∫
∞

0
e21(0, τ )m

2(0, τ )dτ

+ λγ e−γ

∫
∞

0
∥e1(τ )∥2dτ

+ 2ρe−γ

∫
∞

0
∥e1(τ )∥2

∥ϖ (τ )∥2dτ + µ

∫
∞

0
e22(0, τ )dτ

+ µγ

∫
∞

0
∥e2(τ )∥2dτ + 2ρeγ

∫
∞

0
∥e2(τ )∥2

∥ϖ (τ )∥2dτ

≤ V1(0).

From (42) and (43), it can be concluded that there are con-
stants θ1 > 0 and θ2 > 1 such that
∥g6∥1 ≤θ1V1(0), (51)

∥g7∥1 ≤θ2V1(0). (52)
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Table 2
Comparison of computation time of kernels K̆ u and K̆m . 
 Spatial step size Numerical solver (s) NO(s) Speedup Error  
 dx=0.01 8.221 × 10−3 4.38 × 10−3 2× 0.024 
 dx=0.05 2.432 × 10−2 4.42 × 10−3 58× 0.031 
 dx=0.001 8.701 × 10−1 4.513 × 10−3 192× 0.037 
 dx=0.0005 3.191 4.631 × 10−3 689× 0.045 

Fig. 3. The train and test loss for neural operator K̂.

Recalling (41), we have that

V̇ (t) ≤ −
1
2
V (t) + g6(t)V (t) + g7(t).

We also have from Lemma B.6 in Krstic, Kokotovic, and Kanel-
lakopoulos (1995) that 

V (t) ≤ (e−
1
2 tV (0) + ∥g7∥1)e∥g6∥1 . (53)

We then introduce the function

V6(t) := V1(t) + V (t).

Noticing that 

V1(t) ≤ V1(0) ≤ θ2V1(0)eθ1V1(0), (54)

we achieve from (53), (54), (51) and (52) the following

V6(t) =V (t) + V1(t)

≤(e−
1
2 tV (0) + ∥g7∥1)e∥g6∥1 + θ2V1(0)eθ1V1(0)

≤(θ2V (0) + θ2V1(0))e∥g6∥1 + θ2V1(0)eθ1V1(0)

≤2θ2V6(0)eθ1V6(0).

This Lyapunov functional can be represented by an equivalent 
norm, and the bounds of this equivalent norm are determined by 
two positive constants k1 > 0 and k2 > 0.

k1S(t) ≤ V6(t) ≤ k2S(t).

So we have

S(t) ≤ 2
k2
k1
θ2S(0)eθ1k2S(0). ■

5. Simulations

This section will present and analyze the performance of the 
proposed NO-based adaptive controllers for two PDE models: (i) 
a general 2 × 2 hyperbolic system (3) (ii) the ARZ PDE system. 
Through these examples, we will demonstrate the effectiveness 
of the NO-based adaptive control design.
9

5.1. Simulation of the coupled 2 × 2 hyperbolic system

A. Simulation configuration
The coefficients are defined as c1(x) = cos(σ1 cos−1(x)), c2(x) =

cos(σ2 cos−1(x)), c3(x) = sin(1 − σ3x) + 1 and c4(x) = cos(σ4x)
with the shape parameters σ1, σ2, σ3 and σ4. Although this paper 
uses specific Chebyshev polynomial forms, sine functions, and 
cosine functions, our framework is applicable to any compact set 
of continuous functions. We use the first order finite difference 
scheme to solve PDEs, where the time step dt = 0.005 s, the 
spatial step dx = 0.05 m, the total time T = 10 s, and the length 
L = 1 m. The initial conditions are u0 = sin(2πx), m0 = x.

B. Dataset generation and NO training 
We choose 10 sets of (c1, c2, c3, c4, r) randomly sampled with 

σ1 ∼ U(3.5, 4.5), σ2 ∼ U(0.8, 1), σ3 ∼ U(20, 21), σ4 ∼ U(10, 11)
and r ∼ U(2, 5), where U(a, b) denotes the uniform distribution 
over the interval [a, b]. We simulate trajectories using adaptive 
control methods and calculate the corresponding kernel functions 
using numerical solvers. In practice, during DeepONet design, we 
choose a sufficiently expressive architecture to ensure accurate 
approximation of the kernel functions as shown in Fig.  2. Each 
trajectory was sampled at 1000 time points, resulting in a dataset 
of 10000 sets of (ĉ1, ĉ2, ĉ3, ĉ4, r̂, K̆ u, K̆m) for training. We trained 
the model on an Nvidia RTX 4060 Ti GPU. After 600 epochs of 
training, the L2 error of neural operator K̂ reached 1.2 × 10−3, 
and the test error was 1.1 × 10−3, as shown in Fig.  3.

C. Computation time comparison
Table 2 provides a comparison of the computation time of 

solving kernels at each time step using the numerical solver 
and the trained DeepONet model. We can see that as the sam-
pling accuracy improves, the acceleration obtained by the NO 
becomes substantial. We computed the average absolute error ∫ 1
ξ

∫ x
0 (|K̆

u
− K̂ u

| + |K̆m
− K̂m

|)dξdx between numerical solutions 
and NO solutions with different step sizes. Although the er-
ror slightly increases with the decrease of step size, they are 
quite small at all step sizes. Because adaptive control requires 
calculating control gain at every step of updating parameter esti-
mation, quickly solving the kernel function can help improve the 
performance of adaptive control.

D. Simulation results 
We test the performance of the closed-loop system stability 

with test values (σ1 = 4, σ2 = 0.9, σ3 = 20.1, σ4 = 10.1, r = 4)
unseen during training. Fig.  4 shows the kernels K̆ u, K̆m calculated 
by the numerical solver, the kernels K̂ u, K̂m learned by Deep-
ONet, and the error between them. In Fig.  5, we demonstrate 
closed-loop stability with the NO approximated kernel function 
for the control feedback law. Figs.  4 and 5 confirm that the 
kernels K̂ u, K̂m approximated by NO can effectively simulate the 
backstepping kernels K̆ u, K̆m while maintaining the stability of 
the system. All estimated parameters ĉi and r̂ are shown in Fig. 
6. We emphasize that although in adaptive control the system 
parameters ĉ1, ĉ2, ĉ3, ĉ4 and r̂ may not precisely converge to 
their true values, this does not affect the control performance. 
This phenomenon is not a problem but rather a characteristic 
of adaptive control. The goal of adaptive control is not perfect 
system identification, but rather the estimation of parameters 
that ensure system stability.

E. Comparative experiment with RL
We will evaluate the performance of NO-based adaptive con-

trol method and RL method for stabilization results under differ-
ent initial conditions. In this work, we implement the Proximal 
Policy Optimization (PPO) algorithm. The PDE state is discretized 
and used as the observation input to a neural network policy. The 
output of the policy network determines the boundary control 
action at each time step. The PPO algorithm is trained to minimize 
a cumulative cost function, which achieves regulation of the 
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Fig. 4. The first row shows the exact estimated kernels K̆ u and K̆m . The second row shows the NO estimated kernels K̂ u and K̂m . The last row shows the kernel 
errors K̆ u

− K̂ u and K̆m
− K̂m . All kernels are plotted at the final time T .
Fig. 5. Simulation of the close-loop system with feedback controller (23) and (29). The left columns of the first and second rows show close-loop system states 
u(x, t), m(x, t) with the analyzed kernels K̆ u and K̆m . The middle columns of the first and second rows show close-loop system states uNO(x, t), mNO(x, t) with the 
approximated kernels K̂ u and K̂m . The right columns of the first and second rows show the errors between u(x, t) and uNO(x, t), and between m(x, t) and mNO(x, t), 
respectively.
traffic states to a spatially uniform density and velocity. We use 
the standard clipped surrogate objective for policy updates. We 
choose the initial condition of state u is a sine function 

u0 = sin(ω0πx), (55)

where ω0 is the frequency of a sine wave. To evaluate the per-
formance of these two methods, we train DeepONet and RL 
at the same frequency ω0 = 2, ensuring all other parame-
ters remained consistent with those in Fig.  4. In the testing 
phase, we will use sine initial conditions of different frequencies 
10
ω0 = 2, 10 to verify the model stability of NO-based adap-
tive control and RL. Fig.  7 shows the stabilization results of 
the RL and NO control under different initial conditions. The 
comparative experiments highlight a significant advantage of the 
NO-based adaptive control method, which consistently demon-
strates robustness across different initial conditions. Specifically, 
the NO-based adaptive control method maintains system stability 
without requiring retraining even when the initial conditions 
are changed. This characteristic underscores its adaptability in 
dynamic environments. In contrast, the RL method shows a sig-
nificant dependency on initial conditions. Although it performs 
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Fig. 6. ĉ1 , ĉ2 , ĉ3 , ĉ4 and r̂ estimates using NO approximated kernels. The blue dashed lines represent the true parameters, and the red solid lines represent the 
estimated parameters.
Fig. 7. Comparison of system stability between NO-based adaptive control and RL under different initial conditions (55). (a) State evolution under NO-based adaptive 
control when the parameter of initial condition (55) is ω0 = 2. (b) State evolution under NO-based adaptive control when the parameter of initial condition (55) is 
ω0 = 10. (c) State evolution under RL when the parameter of initial condition (55) is ω0 = 2. (d) State evolution under RL when the parameter of initial condition 
(55) is ω0 = 10.
well under specific conditions encountered during training, it is 
unstable when faced with unforeseen initial conditions(ω0 = 10). 
In real-world scenarios where initial conditions are often variable 
and unpredictable, DeepONet ensures stability and adaptability 
without the need for retraining. In summary, this demonstrates 
DeepONet’s potential for more reliable applications in adaptive 
control systems, where maintaining performance across diverse 
conditions is crucial.
11
5.2. Application simulation of the ARZ traffic system

A. NO-based adaptive controller
Following the steps in Section 2, we can obtain the adaptive 

controller for ARZ traffic system (1) as follows 

U(t) =

∫ 1

0
K̆ u1 (1, ξ , t)u1(ξ, t)dξ +

∫ 1

0
K̆m1 (1, ξ , t)m1(ξ, t)dξ,

(56)
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Fig. 8. Density and velocity evolution of open-loop ARZ traffic system.
Fig. 9. Simulation of density and velocity with feedback controller (56) and (58). The left columns of the first and second rows show close-loop system states ρ(x, t), 
v(x, t). The middle columns of the first and second rows show close-loop system states ρNO(x, t), vNO(x, t). The left columns of the first and second rows show the 
relative L2 error between ρ(x, t) and ρNO(x, t), and between v(x, t) and vNO(x, t), respectively.
with the parameter update law 
ĉt (x, t) = Projc̄

{
γ3eγ xε1(x, t)u1(x, t), ĉ(x, t)

}
, (57)

where

ϵ1(x, t) = m1(x, t) − m̂1(x, t),

and the kernels satisfy the following kernel functions
(γ p∗

− v∗)K̆ u1
x (x, ξ , t) =v∗K̆ u1

ξ (x, ξ , t)

+ ĉ(x, t)K̆m1 (x, ξ , t),

(γ p∗
− v∗)K̆m1

x (x, ξ , t) = − (γ p∗
− v∗)K̆m1

ξ (x, ξ , t),

K̆ u1 (x, x, t) = −
ĉ(x, t)
γ p∗

,

K̆m1 (x, 0, t) =
v∗

γ p∗ − v∗
rK̆ u1 (x, 0, t).

According to the approximation of NO in Theorem  3, we get the 
NO-based adaptive controller 

U(t) =

∫ 1

0
K̂ u1 (1, ξ , t)u1(ξ, t)dξ +

∫ 1

0
K̂m1 (1, ξ , t)m1(ξ, t)dξ .

(58)

B. Simulation results 
Then, we analyze the performance of the proposed NO-based 

adaptive control law for the ARZ traffic PDE system through 

12
simulations on a L=600 m road over T=300s. The parameters 
are set as follows: free-flow velocity vm = 40 m/s, maximum 
density ρm = 160 veh/km, equilibrium density ρ∗

= 120 veh/km, 
driver reaction time τ = 60 s. Let γ = 1. Initial conditions are 
sinusoidal inputs ρ(x, 0) = ρ∗

+ 0.1 sin( 3πxL )ρ∗ and v(x, 0) =

v∗
−0.01 sin( 3πxL )v∗ to mimic stop-and-go traffic. Recent advances 

in traffic sensing technologies, such as connected vehicles (CVs), 
loop detectors, and roadside sensors, provide increasingly dense 
and accurate measurements. To generate a sufficient dataset for 
training, we use 10 different c(x) functions with τ ∈ U[50, 70]
and simulate the resulting PDEs under the adaptive controller 
for T = 300 seconds. We sub-sample each (c, K̂ u1 , K̂m1 ) pair 
every 0.1 s, resulting in a total of 30,000 distinct (c, K̂ u1 , K̂m1 )
pairs for training the NO. Using the trained NO, we simulate with 
the same parameters. Fig.  8 shows the ARZ system is open-loop 
unstable. Figs.  9 show the density and velocity of ARZ traffic 
system. The blue line indicates the initial condition, whereas the 
red line represents the boundary condition of the system. The 
results indicate that both the NO-based adaptive method and 
the adaptive backstepping control method effectively stabilize the 
transportation system. The traffic density and velocity converge 
to the equilibrium values of ρ∗

= 120 veh/km and v∗
= 36 m/s, 

respectively. As shown in Fig.  10, the boundary control input con-
structed using the DeepONet-based kernels achieves stabilization 
performance comparable to that of the exact controller, indicating 
that the learned kernels are sufficiently accurate for practical 
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Fig. 10. Parameter estimation of ĉ in ARZ traffic system and comparison of true c and ĉ .
Table 3
Computation time and mean square errors (MSE) of density and velocity for the 
nominal and NO-based adaptive controllers in traffic control.
 Method Average 

Computation time (s)
MSE %

 Density ρ Velocity v 
 Nominal Adaptive Controller 1.51 0 0  
 NO-based Adaptive Controller 0.043 0.021 0.011  

traffic control applications and effectively alleviate traffic conges-
tion. The maximum error does not exceed 10%. The estimated 
parameter ĉ is shown in Fig.  10.

Table  3 presents the computation times for both the nom-
inal adaptive controller and the NO-based adaptive controller. 
As the baseline result, the nominal adaptive control method is 
compared with the NO-based adaptive control method. Notably, 
the NO-based adaptive control method not only achieves sig-
nificantly faster average computation times but also maintains 
superior accuracy with lower mean square errors. These advan-
tages of the NO-based adaptive control method not only enhance 
computational efficiency but also make it highly suitable for 
real-time traffic system applications. The NO method’s efficiency 
and accuracy represent a substantial advancement, promising 
more effective and scalable traffic control strategies in practical 
scenarios.

6. Conclusion

We develop a NO-based adaptive boundary control design 
for a 2 × 2 linear first-order hyperbolic system. Compared with 
the previous studies (Lamarque et al., 2025), (Bhan et al., 2025) 
that primarily focused on approximating a single kernel PDE, this 
work accelerates the computation of 2 × 2 coupled Goursat-
form PDEs. In this paper, the DeepONet is used to learn the 
adaptive control gains for stabilizing the traffic PDE system, and 
it is shown that under the DeepONet-approximated kernels the 
stabilization of 2 × 2 hyperbolic PDEs can still be achieved with 
significant improvement for computational speeds. Experimental 
results show that compared to traditional numerical solvers, our 
method improves computational efficiency by two orders of mag-
nitude. Additionally, compared with RL, the NO-based adaptive 
control strategy is independent of the system’s initial conditions, 
making it more robust for rapidly changing traffic scenarios. Our 
method significantly accelerates the process of obtaining adap-
tive controllers in PDE systems, greatly improving the real-time 
applicability of adaptive control strategies for mitigating traffic 
congestion. In the future, we will incorporate real traffic data into 
the training of the neural operator.
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Appendix. Proof of Lemma  1

The proof of this lemma follows a similar approach to the 
proof of Lemma 9.1 in Anfinsen and Aamo (2019). Property (13) 
follows trivially from projection in (11) and Lemma A.1 in Anfin-
sen and Aamo (2019). The result can be easily obtained using the 
following Lyapunov function candidate: 

V1(t) =V2(t) + γ−1
1 ∥c̃1∥2

+ γ−1
2 ∥c̃2∥2

+ γ−1
3 ∥c̃3∥2

+ γ−1
4 ∥c̃4∥2

+
λ

2γ5
r̃2(t), (A.1)

where

V2(t) =

∫ 1

0
e−γ xe21(x, t)dx +

∫ 1

0
eγ xe22(x, t)dx.

Computing the time derivative of (A.1) along (7)–(10) as

V̇1(t) =2
∫ 1

0

(
e−γ xe1(x, t)e1t (x, t) + eγ xe2(x, t)e2t (x, t)

)
dx

+ 2γ−1
1

∫ 1

0
c̃1(x, t)c̃1t (x, t)dx

+ 2γ−1
2

∫ 1

0
c̃2(x, t)c̃2t (x, t)dx

+ 2γ−1
3

∫ 1

0
c̃3(x, t)c̃3t (x, t)dx

+ 2γ−1
4

∫ 1

0
c̃4(x, t)c̃4t (x, t)dx + λγ−1

5 r̃(t)̇̃r(t).

Substituting into the dynamics (7)–(10) and integrating by parts, 
we obtain

V̇1(t) = − λe−γ e21(1, t) + λe21(0, t) − λγ

∫ 1

0
e−γ xe21(x, t)dx

+ 2
∫ 1

0
e−γ xe1(c̃1u + c̃2m)dx

− 2ρ
∫ 1

0
e−γ xe21(x, t)∥ϖ (t)∥2dx

− µe22(0, t) − µγ

∫ 1

0
eγ xe22(x, t)dx

+ 2
∫ 1

0
eγ xe2(c̃3u + c̃4m)dx

− 2ρ
∫ 1

eγ xe22(x, t)∥ϖ (t)∥2dx

0
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+ 2γ−1
1

∫ 1

0
c̃1(x, t)c̃1t (x, t)dx

+ 2γ−1
2

∫ 1

0
c̃2(x, t)c̃2t (x, t)dx

+ 2γ−1
3

∫ 1

0
c̃3(x, t)c̃3t (x, t)dx

+ 2γ−1
4

∫ 1

0
c̃4(x, t)c̃4t (x, t)dx + λγ−1

5 r̃(t)̇̃r(t).

Inserting the adaptive laws (11). By using the property (12), we 
have

c̃1(x, t)c̃1t (x, t) = −c̃1(x, t)ĉ1t (x, t)
= −c̃1(x, t) Projc̄1 (γ1e

−γ xe1u, ĉ1(x, t))

≤ −c̃1(x, t)γ1e−γ xe1u. (A.2)

Similarly for c̃2, c̃3, c̃4, and r̃ . Then we have 

V̇1(t) ≤ − λe−γ e21(1, t) + λe21(0, t) − λγ

∫ 1

0
e−γ xe21(x, t)dx

− 2ρ
∫ 1

0
e−γ xe21(x, t)∥ϖ (t)∥2dx

− µe22(0, t) − µγ

∫ 1

0
eγ xe22(x, t)dx

− 2ρ
∫ 1

0
eγ xe22(x, t)∥ϖ (t)∥2dx − λr̃(t)e1(0, t)m(0, t).

(A.3)

From the boundary condition (9), we have 

e1(0, t) − r̃(t)m(0, t) = −e1(0, t)m2(0, t). (A.4)

For the second and last terms in (A.3), substituting (A.4), we have

λe21(0, t) − λr̃(t)e1(0, t)m(0, t)
= λe1(0, t)

(
e1(0, t) − r̃(t)m(0, t)

)
= −λe21(0, t)m

2(0, t). (A.5)

By substituting (A.5), we obtain

V̇1(t) ≤ − λe−γ e21(1, t) − λe21(0, t)m
2(0, t) − λγ e−γ

∥e1(t)∥2

− 2ρe−γ
∥e1(t)∥2

∥ϖ (t)∥2
− µe22(0, t)

− µγ ∥e2(t)∥2
− 2ρeγ ∥e2(t)∥2

∥ϖ (t)∥2. (A.6)

From (A.6), we obtain that V1 is bounded. By the definitions 
of V1 and V2, it follows that ∥e1∥, ∥e2∥ ∈ L∞. When (A.6) is 
integrated over time from zero to infinity, we conclude the results 
that ∥e1∥, ∥e2∥ ∈ L2, (15), and e1(1, ·), e2(0, ·), |e1(0, ·)m(0, ·)| ∈

L2. From above results and the adaptive laws (11), we derive 
that (16). we choose the Lyapunov function candidate V3(t) =
1
2γ

−1
5 r̃2(t), and use the property (12), we find 

V̇3(t) ≤ −r̃(t)e1(0, t)m(0, t) ≤ −
r̃2(t)m2(0, t)
1 + m2(0, t)

. (A.7)

This implies that V3 is upper-bounded, and hence we have V3 ∈

L∞. By integrating (A.7) from zero to infinity, we obtain (18). 
Using (9) and (A.4), we derive that 
e21(0, t) = e1(0, t)

(
r̃(t)m(0, t) − e1(0, t)m2(0, t)

)
=

r̃2(t)m2(0, t)
1 + m2(0, t)

− e21(0, t)m
2(0, t),

(A.8)

and from |e (0, ·)m(0, ·)| ∈ L2 and (18), we have e (0, ·) ∈ L2.
1 1
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